tìm GTNN của x^2 +y^2 -6x+4y
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm x,y để biểu thức đạt GTNN và GTNN là bao nhiêu
x4 - 4y(x2-4y) + x2 -6x +10
Tìm GTNN
a) B=x^2+y^2-x+4y+10
b) C=2x^2-6x
\(B=x^2+y^2-x+4y+10\)
\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+4y+4\right)+\frac{23}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+2\right)^2+\frac{23}{4}\ge\frac{23}{4}\forall x\)
=> Min B = 23/4 tại \(\hept{\begin{cases}x=\frac{1}{2}\\y=-2\end{cases}}\)
\(C=2x^2-6x\)
\(=2x^2-6x+\frac{9}{2}-\frac{9}{2}\)
\(=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}\)
\(=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\forall x\)
=> Min C = -9/2 tại \(x=\frac{3}{2}\)
tìm GTNN của B= x^4-2xy(x^2-4y) + x^2 - 6x+10
các anh chị pro toán giúp em
tìm GTNN của biểu thức B=x^4-2xy(x^2-4y)+x^2-6x+10
có ai giúp em không
1,Tìm số nguyên m để C=căn(m^2+m+1) là số nguyên
2,cho hai số x,y thỏa mãn phương trình : 3x^2+4y^2-4xy-6x+4y=5.Tìm GTLN,GTNN của biểu thức M=2x+2015
Bài 4:
a, Tìm GTLN
\(Q=-x^2-y^2+4x-4y+2\)
b, Tìm GTLN
\(A=-x^2-6x+5\)
\(B=-4x^2-9y^2-4x+6y+3\)
c, TÌm GTNN
\(P=x^2+y^2-2x+6y+12\)
a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)
\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)
\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)
Vậy MaxQ=10 khi x=2, y=-2
b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)
\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)
Vậy MaxA=14 khi x=-3
+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)
Vậy MaxB=5 khi x=-1/2, y=1/3
c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Vậy MinP=2 khi x=1, y=-3
Tìm GTNN
\(x^2+y^2+12xy-6x-4y+12\)
Tính GTNN của: x2 + y2 - 6x + 12xy - 4y + 12
Biểu thức không có giá trị nhỏ nhất. Bạn xem lại đề.
f(x)=(2x-3)^2+(x+4)^2-(3x^2+5x-2) tìm GTNN
F=2x^2+3y^2-8x+24y-7 tìm GTNN
F=-5x^2-4y^2+20x-32y+9 tìm GTLN
F=x^2+y^2-x+y-3 tìm GTNN
F=F=5x^2+y^2-4xy-6x+20 tìm GTNN
F=-13x^2-4y^2+12xy+20x+37
F=5x^2+9y^2-12xy+24x-48y+100
Cho x+y=5 Cho A= x^3+y^3-8(x^2+y^2)+xy+2 tính GTLN của A
Cho x+y+2=0 Tìm min của B=2(x^3+y^3)-15xy+7
Cho x+y+2=0 tìm min của C=x^4+y^4-(x^3+y^3)+2x^2y^2+2xy(x^2+y^2)+13xy