Những câu hỏi liên quan
H24
Xem chi tiết
NH
11 tháng 1 2018 lúc 18:59

Sửa đề : \(S=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right).....\left(1-\frac{1}{144}\right)\)

\(\Rightarrow S=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{143}{144}\) 

\(\Rightarrow S=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{11.13}{12.12}\) 

\(\Rightarrow S=\frac{1.2.3.....11}{2.3.4.....12}.\frac{3.4.5.....13}{2.3.4.....12}\)  

\(\Rightarrow S=\frac{1}{12}.\frac{13}{2}\) 

\(\Rightarrow S=\frac{13}{24}\)

Bình luận (0)
CP
Xem chi tiết
TN
Xem chi tiết
LH
9 tháng 8 2016 lúc 15:37

1/4 = 1/(2*2) < 1/(1*2) = 1/2 - 1/4 
tương tự ta có 
1/16 < 1/(2*4) = 1/4 - 1/8 
1/36 < 1/(4*6) = 1/8 - 1/12 
1/64 < 1/(6*8) = 1/12 - 1/16 
1/100 < 1/(8*10) = 1/16 - 1/20 
1/144 < 1/(10*12) = 1/20 - 1/24 
1/196 < 1/(12* 14) = 1/24 - 1/28 
cộng hết lại 
=> 1/4 + 1/16 + ......+ 1/100 + 1/144 + 1/196 < 1/2 - 1/28 < 1/2 => đpcm

Bình luận (2)
NA
13 tháng 8 2016 lúc 20:50

ta có 
1/4 = 1/(2*2) < 1/(1*2) = 1/2 - 1/4 
tương tự ta có 
1/16 < 1/(2*4) = 1/4 - 1/8 
1/36 < 1/(4*6) = 1/8 - 1/12 
1/64 < 1/(6*8) = 1/12 - 1/16 
1/100 < 1/(8*10) = 1/16 - 1/20 
1/144 < 1/(10*12) = 1/20 - 1/24 
1/196 < 1/(12* 14) = 1/24 - 1/28 
cộng hết lại 
=> 1/4 + 1/16 + ......+ 1/100 + 1/144 + 1/196 < 1/2 - 1/28 < 1/2 => đpcm
Tick đúng nha bạn

 

Bình luận (2)
NA
9 tháng 5 2019 lúc 17:22

1/4+1/16+1/36+...+1/196<1/4.2=1/2

Bình luận (0)
TH
Xem chi tiết
VH
Xem chi tiết
AN
Xem chi tiết
VG
Xem chi tiết
NK
Xem chi tiết
ST
14 tháng 5 2017 lúc 10:54

a, Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2017^2}< \frac{1}{2016.2017}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2017^2}>\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}=1-\frac{1}{2017}< 1\)Vậy...

b, Đặt A = \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}\)

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(A=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

Đặt B = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};.....;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)

Thay B vào A ta được:

\(A< \frac{1}{4}\left(1+1\right)=\frac{1}{4}.2=\frac{1}{2}\)

Vậy....

Bình luận (0)
ST
14 tháng 5 2017 lúc 12:38

c, Ta có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};....;\frac{1}{9^2}>\frac{1}{9.10}\)

\(\Rightarrow A>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)(1)

Lại có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{9^2}< \frac{1}{8.9}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)(2)

Từ (1) và (2) suy ra \(\frac{2}{5}< A< \frac{8}{9}\)(đpcm)

d, chắc là đề sai

e, giống câu a

Bình luận (0)
NK
Xem chi tiết