Những câu hỏi liên quan
KA
Xem chi tiết
HH
5 tháng 8 2017 lúc 21:23

a/(b+c)+c/(a+d)=a^2+ad+c^2+bc/(a+d)(b+c)>=4(a^2+ad+c^2+bc)/(a+b+c+d)^2(BĐT 1/xy>=4/(x+y)^2

Tương tự rồi cộng lại ta có a/b+c+c/a+d+b/c+d+d/a+b>=4(a^2+b^2+c^2+d^2+ad+bc+ab+cd)/(a+b+c+d)^2=A

>>>Ta sẽ chứng minh A>=1/2 hay 2(a^2+b^2+c^2+d^2+ab+bc+cd+da)>=(a+b+c+d)^2

 tương đương với a^2+b^2+c^2+d^2-2ac-2bd>=0<<->>(a-c)^2+(b-d)^2>=0(luôn đúng)(đpcm)

Dấu = xảy ra khi a=c và b=d

Bình luận (0)
NT
6 tháng 8 2017 lúc 8:30

đây là Nesbit 4 số

nếu như gặp bđt Nesbit thì làm thế này:

đặt \(B=\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}+\frac{a}{a+b}\)

\(C=\frac{c}{b+c}+\frac{d}{c+d}+\frac{a}{d+a}+\frac{b}{a+b}\)

\(B+C=\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+d}{c+d}+\frac{d+a}{d+a}=4\)

\(A+B=\frac{a+b}{b+c}+\frac{b+c}{c+d}+\frac{c+d}{d+a}+\frac{d+a}{a+b}\ge4\)(theo cô si)

\(A+C=\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\)

\(\ge\frac{4\left(a+c\right)}{a+b+c+d}+\frac{4\left(b+d\right)}{a+b+c+d}=\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4\)

\(\Rightarrow2A+B+C\ge8\Rightarrow2A+4\ge8\Rightarrow A\ge2\)

dấu bằng khi a=b=c=d

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
TS
2 tháng 10 2019 lúc 19:08

ok. Mình không nghĩ là toán 8 và thực sự chả hiểu j cả

Bình luận (0)
HV
Xem chi tiết
TN
29 tháng 6 2017 lúc 20:20

phải chứng minh

Bình luận (0)
HV
29 tháng 6 2017 lúc 21:14

chứng minh nó thì phải cm am-gm 2 số sau đó là 4 số @@ dài lắm

Bình luận (0)
MP
Xem chi tiết
TH
30 tháng 5 2021 lúc 21:27

Ta có \(3a+1\ge\left(\dfrac{\sqrt{10}-1}{3}a+1\right)^2\Leftrightarrow a\left(3-a\right)\ge0\) (luôn đúng)

Do đó \(\sqrt{3a+1}\ge\dfrac{\sqrt{10}-1}{3}a+1\).

Tương tự, \(\sqrt{3b+1}\ge\dfrac{\sqrt{10}-1}{3}b+1;\sqrt{3c+1}\ge\dfrac{\sqrt{10}-1}{3}c+1\).

Do đó \(\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}\ge\sqrt{10}+2\).

Dấu "=" xảy ra khi chẳng hạn a = 3; b = c = 0

Bình luận (0)
MY
30 tháng 5 2021 lúc 21:19

Tham khảo:

https://hoc24.vn/hoi-dap/tim-kiem?id=219071991005&q=Cho%203%20s%E1%BB%91%20th%E1%BB%B1c%20kh%C3%B4ng%20%C3%A2m%20a%2Cb%2Cc%20v%C3%A0%20a%20b%20c%3D3%20T%C3%ACm%20GTLN%20v%C3%A0%20GTNN%20c%E1%BB%A7a%20bi%E1%BB%83u%20th%E1%BB%A9c%20K%3D%5C%28%5Csqrt%7B3a%201%7D%20%5Csqrt%7B3b%201%7D%20%5Csqrt%7B3c%201%7D%5C%29

Bình luận (0)
PV
Xem chi tiết
SN
1 tháng 6 2018 lúc 20:31

Câu hỏi của Called love - Toán lớp 8 - Học toán với OnlineMath

Ban jtrar My làm òi nhé !

Bình luận (0)
AK
1 tháng 6 2018 lúc 20:57

Bạn tham khảo tại đây : 

Câu hỏi của Nguyễn Anh Quân - Toán lớp 8 - Học toán với OnlineMath

~ Ủng hộ nhé 

Bình luận (0)
H24
1 tháng 6 2018 lúc 21:10

P/s nhớ là đã làm 1 lần rùi :)

\(a+b+c\ge3\sqrt[3]{3}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3^3\sqrt{\frac{1}{abc}}\)

Nhân 2 vế lại với nhau ta được: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

Vậy \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(đpcm\right)\)

Bình luận (0)
H24
Xem chi tiết
H24
26 tháng 8 2019 lúc 7:29

bớt xàm đc ko tth?

Bình luận (0)
TK
22 tháng 9 2019 lúc 13:39

Đặt \(a=\frac{x}{3};b=\frac{y}{3};c=\frac{z}{3}\)=> \(x+y+z=3\)

=> Cần Cm: \(x^2y+y^2z+z^2x\le4\)

Giả sử \(x\ge y\ge z\)

=> \(z\left(x-y\right)\left(y-z\right)\ge0\)

=> \(xyz+z^2y\ge y^2z+z^2x\)

Khi đó BĐT 

<=> \(xyz+z^2y+x^2y\le4\)

<=> \(y\left(x^2+z^2+xz\right)\le4\)

<=>\(y.\left[\left(3-y\right)^2-xz\right]\le4\) 

Do \(xz\ge0\)

=> \(y\left(3-y\right)^2\le4\)

<=> \(y^3-6y^2+9y-4\le0\)

<=> \(\left(y-4\right)\left(y-1\right)^2\le0\)luôn đúng do \(y< 3< 4\)

=> ĐPCM

Dấu bằng xảy ra khi \(x=2;y=1;z=0\)và các hoán vị

=> \(a=\frac{2}{3};b=\frac{1}{3};c=0\)và các hoán vị

Bình luận (0)
PH
Xem chi tiết
VH
22 tháng 6 2017 lúc 22:53

3x2 + 17y3 = 3x2 + 9y3 + 8y3 \(\ge\)

Bình luận (0)
PH
23 tháng 6 2017 lúc 10:53

cho hỏi bn tách cái 17y^3 dựa vào j vậy???

Bình luận (0)
HP
Xem chi tiết
AN
16 tháng 11 2016 lúc 13:51

\(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\)

\(\Leftrightarrow a+b+c-3\sqrt[3]{abc}\ge0\)

\(\Leftrightarrow\left(\sqrt[3]{a}+\sqrt[3]{b}\right)^3+c-3\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}\right)-3\sqrt[3]{abc}\ge0\)

\(\Leftrightarrow\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}+\sqrt[3]{c^2}-\sqrt[3]{ab}-\sqrt[3]{bc}-\sqrt[3]{ac}\right)\ge0\)

Mà ta có \(\hept{\begin{cases}\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\ge0\\\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}+\sqrt[3]{c^2}-\sqrt[3]{ab}-\sqrt[3]{bc}-\sqrt[3]{ac}\right)\ge0\end{cases}}\)nên cái BĐT là đúng

Bình luận (0)
HN
16 tháng 11 2016 lúc 16:58
Ta có BĐT giữa trung bình nhân và trung bình cộng : \(\frac{a+b}{2}\ge\sqrt{ab}\) ; \(\frac{c+d}{2}\ge\sqrt{cd}\)Trước hết ta chứng minh BĐT \(\frac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\)

Áp dụng BĐT trên , ta được :  \(\frac{a+b+c+d}{2}=\frac{a+b}{2}+\frac{c+d}{2}\ge2\sqrt{\frac{\left(a+b\right)}{2}.\frac{\left(c+d\right)}{2}}\ge2\sqrt{\sqrt{ab}.\sqrt{cd}}=2\sqrt[4]{abcd}\)

\(\Leftrightarrow\frac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\) (*)

Đặt \(d=\frac{a+b+c}{3}\) thì \(a+b+c=3d\) (**)

Từ (*) và (**) ta có : \(\frac{3d+d}{4}\ge\sqrt[4]{abcd}\Leftrightarrow d\ge\sqrt[4]{abcd}\Leftrightarrow d^4\ge abcd\Leftrightarrow d^3\ge abc\Leftrightarrow d\ge\sqrt[3]{abc}\) 

hay \(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\) (đpcm)

Bạn tự xét dấu đẳng thức nhé!

Bình luận (0)
BH
16 tháng 11 2016 lúc 20:53

cm BĐT x3+y3+z3>=3xyz bằng cách phân tích đa thức thành nhân tử sau đó chứng minh tích đó lớn hơn 0

đặt căn bậc 3 của a =x , căn bậc 3 của b = y , căn bậc ba của c=z

ta có a+b+c>=ba căn bậc ba của abc

Bình luận (0)