3. Chứng minh rằng nếu: x/a = y/b = z/c thì (x^2 + y^2 + z^2) (a^2 + b^2 + c^2) = (ax + by + cz)^2
Chứng minh rằng nếu ( a^2 + b^2 + c^2 ).( x^2 + y^2 + z^2 ) = ( ax + by + cz ) ^2 với x,y,z khác 0
thì a / x = b / y = c / z
nhan 2 ve voi a^2+b^2+c^2 dc toan binh phuong ,lon hon 0 nen x=y=z=0
CÁCH 1: Theo bất đẳng thức Bunhiacopski ta có:
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)
Dấu bằng xảy ra khi và chỉ khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
CÁCH 2: Nhân tung tóe cả 2 vế ra(đây cũng là cách CM bất đẳng thức bunhia cho bộ 3 số)
Chứng minh rằng nếu (a2 + b2 +c2) = (ax + by + cz) với x, y, z khác 0 thì a/x = b/y= c/z
chứng minh nếu (a^2+b^2+c^2)(x^2+y^2+z^2)=(ax+by+cz)^2 với x,y,z khác 0 thì a/x=b/y=c/z
Phá ngoặc hết ra rồi phân tích thành tổng 3 bình phương.
Câu hỏi của nguyễn ngọc minh - Toán lớp 8 - Học toán với OnlineMath
Cho x,y,z #0 và (ax + by + cz) / x^2+y^2+z^2 = a^2+b^2+c^2
Chứng minh rằng a/x = b/y =c/z
Cho x,y,z #0 và (ax + by + cz) / x^2+y^2+z^2 = a^2+b^2+c^2
Chứng minh rằng a/x = b/y =c/z
Cho x,y,z là 3 số nguyên khác nhau. Chứng minh nếu a=x^2-yz; b=y^2-xz; c=z^2-xy thì tổng ax+by+cz chia hết cho (a+b+c)
Từ giả thiết
x^2 - yz = a
y^2 - zx = b
z^2 - xy = c
ta suy ra
x^2 + y^2 + z^2 - xy - yz - zx = a + b + c # 0 (vì x,y,z không đồng thời bằng nhau);
và
x^3 - xyz = ax
y^3 - xyz = by
z^3 - xyz = cz.
Cộng các đẳng thức theo vế, ta được
x^3 + y^3 + z^3 - 3xyz = ax + by + cz.
Sử dụng hằng đẳng thức x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) và x^2 + y^2 + z^2 - xy - yz - zx = a + b + c thì đẳng thức trên được viết lại
(x + y + z)(a + b + c) = ax + by + cz.
Suy ra ax + by + cz chia hết cho a + b + c.
bài này dùng chia hết thôi
chứng minh rằng nếu ax=by=cz
thì (x2+y2+z2)(a2+b2+c2)=(ax+by+cz)2
Chứng minh rằng nếu ( a^2 + b^2 + c^2 ).( x^2 + y^2 + z^2 ) = ( ax + by + cz ) ^2 với x,y,z khác 0
Giup minh voi
Ta có: x/a = y/b =z/c =xa/a^2 =yb/b^2 =zc/c^2 = (ax+by+cz)/(a^2+b^2+c^2)
=>x/a = (ax+by+cz)/(a^2+b^2+c^2) (1)
Mặt khác ta có:
x/a=y/b=z/c <=> x^2/a^2 =y^2/b^2 =z^2/c^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)
=>x^2/a^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2) (2)
Từ (1) và (2) ta
=> (ax+by+cz)^2/(a^2+b^2+c^2)^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)
=> (x^2+y^2+z^2).(a^2+b^2+c^2)=(ax+by+cz)^2
=> đpcm
Cho x,y,z là các số nguyên khác 0. Chứng minh rằng nếu \(x^2-yz=a,y^2-zx=b,z^2-xy=c\)thì tổng ax+by+cz chia hết cho tổng a+b+c
Ta có
x2-yz=a
y2-zx=b
z2-xy=c
=>x3-xyz=ax
y3-xyz=by
z3-xyz=cz
=> x3+y3+z3-3xyz=ax+by+cz
Lại có
x3+y3+z3-3xyz
=(x+y)3-3x2y-3xy2+z3-3xyz
=[(x+y)3+z3]-3xy(x+y+z)
Áp dụng hằng đẳng thức x3+y3=(x+y)(x2-xy+y2) ta được:
=(x+y+z)[(x+y)2-z(x+y)+z2]-3xy(x+y+z)
=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)
=(x+y+z)(x2+y2+z2-xy-yz-zx)
( Hình như phải Chứng minh ax+by+cz chia hết cho x+y+z chứ nhỉ, nếu ko phải thì cho mik srr nhé, nếu đúng như mình nói thì bạn làm như trên nha)
ak mình nhầm tẹo srr nha, đến chỗ
(x+y+z)(x2+y2+z2-xy-yz-zx)
Vì x2-yz=a, y2-zx=b, z2- xy=c
=>x2+y2+z2-xy-yz-zx=a+b+c
=>ax+by+cz=(x+y+z)(a+b+c)
=> DPCM