Những câu hỏi liên quan
KL
Xem chi tiết
NH
8 tháng 12 2023 lúc 15:02

Bài 1:

cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3

Giả sử a và b đồng thời đều không chia hết cho 3

      Vì a không chia hết cho 3 nên  ⇒ a2 : 3 dư 1

      vì b không chia hết cho b nên   ⇒ b2 : 3 dư 1

⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)

Vậy a; b không thể đồng thời không chia hết cho ba

     Giả sử a ⋮ 3; b không chia hết cho 3 

      a ⋮ 3 ⇒  a 2 ⋮ 3 

   Mà  a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết) 

Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra 

Từ những lập luận trên ta có:

   a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)

       

 

 

Bình luận (0)
PA
Xem chi tiết
HN
15 tháng 1 2017 lúc 20:58

 a,

n kog chia hết cho 3. Ta có: n = 3k +1 và n = 3k+2

TH1: n2 : 3 <=> (3k+1): 3 = (9k2+6k+1) : 3 => dư 1

TH2: n: 3 <=> (3k+2)2 : 3 = (9k2+12k+4) : 3 = (9k2+12k+3+1) : 3 => dư 1 

các phần sau làm tương tự.

Bình luận (0)
NM
Xem chi tiết
LP
28 tháng 10 2023 lúc 20:03

Ta có \(P=n^2+n+7=n\left(n+1\right)+7\). Ta thấy \(n,n+1\) là 2 số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\) \(\Rightarrow P=n\left(n+1\right)+7⋮̸2\)

 Bây giờ ta sẽ chứng minh \(P⋮̸5\). Thật vậy, giả sử tồn tại n để \(P⋮5\) . Khi đó vì P lẻ nên P có chữ số tận cùng là 5. 

 \(\Rightarrow n\left(n+1\right)\) có chữ số tận cùng là 3, điều này rõ ràng vô lí vì \(n\left(n+1\right)⋮2\). Vậy điều giả sử là sai \(\Rightarrow P⋮̸5\) (đpcm)

Bình luận (0)
LP
28 tháng 10 2023 lúc 20:12

Chỗ này 8 mới đúng nhé. Mình vẫn phải làm thêm 1 bước nữa.

 Ta thấy \(n^2\) chỉ có thể có chữ số tận cùng là 0, 1, 4, 5, 6, 8, 9. Ta kí hiệu \(f\left(a\right)\) là chữ số tận cùng của số tự nhiên a.

 Khi đó nếu \(f\left(n^2\right)=0\) thì \(f\left(n\right)=0\), do đó \(f\left(P\right)=0\), loại.

 Nếu \(f\left(n^2\right)=1\) thì \(\left[{}\begin{matrix}f\left(n\right)=1\\f\left(n\right)=9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}f\left(P\right)=2\\f\left(P\right)=0\end{matrix}\right.\), loại.

 Nếu \(f\left(n^2\right)=4\) thì \(\left[{}\begin{matrix}f\left(n\right)=2\\f\left(n\right)=8\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}f\left(P\right)=6\\f\left(P\right)=2\end{matrix}\right.\), loại.

 Nếu \(f\left(n^2\right)=5\) thì \(f\left(n\right)=5\) nên \(f\left(P\right)=0\), loại.

 Nếu \(f\left(n^2\right)=6\) thì \(\left[{}\begin{matrix}f\left(n\right)=4\\f\left(n\right)=6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}f\left(P\right)=0\\f\left(P\right)=2\end{matrix}\right.\), loại.

 Nếu \(f\left(n^2\right)=9\) thì \(\left[{}\begin{matrix}f\left(n\right)=3\\f\left(n\right)=7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}f\left(P\right)=2\\f\left(P\right)=6\end{matrix}\right.\), loại.

Vậy với mọi n thì chữ số tận cùng của P không thể là 8, dẫn tới vô lí. Ta có đpcm.

Bình luận (0)
NT
Xem chi tiết
DT
Xem chi tiết
LV
5 tháng 4 2017 lúc 21:51

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

Bình luận (2)
H24
Xem chi tiết
TD
Xem chi tiết
CT
3 tháng 9 2014 lúc 10:50

n2+n+1 = n(n + 1) +1.

Vì n(n+1) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là 0, 2, 6

Do đó n(n+1) + 1 có chữ số tận cùng là 1, 3, 7. 

Vì 1, 3, 7 không chia hết cho 2 và 5 nên n(n+1) + 1 không chia hết cho 2 và 5

Vậy n2+n+1 không chia hết cho 2 và 5.

Bình luận (0)
GV
4 tháng 9 2014 lúc 7:42

Chú Tiểu làm đúng rồi. Mình giải thích thêm để bạn Tín Đinh hiểu rõ hơn.

n2 + n + 1 = n.(n+1) + 1.

Vì n.(n+1) là tích hai số tự nhiên liên tiếp, trong 2 số liên tiếp luôn luôn có 1 số chẵn => n.(n+1) là số chẵn, cộng thêm 1 sẽ là số lẻ => n.(n+1) + 1 là số lẻ, không chia hết cho 2.

Để chứng minh n.(n+1) + 1 không chia hết cho 5 ta thấy hai số n và n+1 có thể có các chữ số tận cùng sau:

    n   tận cùng là 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; tương ứng số tận cùng của n+ 1 như sau:

n+ 1 tận cùng là 1, 2, 3, 4, 5, 6, 7, 8, 9, 0

=> tích của n.(n+1) tận cùng là:

                              0, 2, 6, 2, 0, 0, 2, 6, 2, 0

Hay là n.(n+1) tận cùng là 0, 2, 6

=> n.(n+1) +1 tận cùng là: 1, 3, 7  không chia hết cho 5

Bình luận (0)
TD
3 tháng 9 2014 lúc 20:11

em cũng chưa hiểu rõ lắm !

Bình luận (0)
LL
Xem chi tiết
DL
23 tháng 10 2016 lúc 15:57

Linh ơi bài này ở đâu thế

Bình luận (0)
LL
23 tháng 10 2016 lúc 16:00

bài này ở toán buổi chiều

Bình luận (0)
LL
23 tháng 10 2016 lúc 20:02

ai giải hộ mình mình k cho

Bình luận (0)
DS
Xem chi tiết
LA
14 tháng 8 2017 lúc 9:48

bài cô Nguyệt

Bình luận (0)