Tính:
C = \(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+....+\frac{1}{7.9}+\frac{1}{8.10}\)
S=\(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{7.9}+\frac{1}{8.10}\)
\(S=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{7.9}+\frac{1}{8.10}\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{7.9}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{8.10}\right)\)
Đặt A = \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{7.9}\)
2A = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{7.9}\)
2A = \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{9}\)
2A = \(1-\frac{1}{9}=\frac{8}{9}\)
A = \(\frac{8}{9}:2=\frac{4}{9}\)
Đặt B = \(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{8.10}\)
2B = \(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{8.10}\)
2B = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{10}\)
2B = \(\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
B = \(\frac{2}{5}:2=\frac{1}{5}\)
Thay A và B vào S ta được:
\(S=\frac{4}{9}+\frac{1}{5}=\frac{29}{45}\)
\(S=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{7.9}+\frac{1}{8.10}\)
\(\Rightarrow S=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{7.9}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{8.10}\right)\)
\(S=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{9}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{10}\right)\)
\(S=\frac{1}{2}\left(1-\frac{1}{9}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(S=\frac{1}{2}.\frac{8}{9}+\frac{1}{2}.\frac{2}{5}\)
\(S=\frac{1}{2}\left(\frac{8}{9}+\frac{2}{5}\right)\)
\(S=\frac{1}{2}.\frac{58}{45}\)
\(S=\frac{29}{45}\)
Tính tổng: \(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}-\frac{1}{4.6}-\frac{1}{6.8}-\frac{1}{8.10}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{8}-\frac{1}{10}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)
\(=\frac{4}{9}-\frac{1}{5}\)
\(=\frac{11}{45}\)
Tính tổng: \(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(A=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(A=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)
\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(A=\frac{4}{9}-\frac{1}{5}=\frac{11}{45}\)
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)
\(S=\frac{1}{2}\left(1-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{10}\right)\)
\(S=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(S=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)
\(S=\frac{4}{9}-\frac{1}{5}\)
\(S=\frac{11}{45}\)
\(\frac{x}{2^2}\)+\(\frac{x}{2^3}\) +\(\frac{x}{2^4}\) =\(\frac{x}{3^2}\) +\(\frac{x}{3^3}\) +\(\frac{x}{3^4}\) là x =
Gía trị biểu thức:
\(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+\frac{1}{5.7}+\frac{1}{6.8}+\frac{1}{7.9}+\frac{1}{8.10}\)
=\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+...+\frac{2}{8.10}\right)\)
= \(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+....+\frac{1}{8}-\frac{1}{10}\right)\)
= \(\frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{9}-\frac{1}{10}\right)\)
=\(\frac{29}{45}\)
<br class="Apple-interchange-newline"><div id="inner-editor"></div>S=11.3 −12.4 +13.5 −14.6 +15.7 −16.8 +17.9 −18.10
(11.3 +13.5 +15.7 +17.9 )−12.4 −14.6 −16.8 −18.10
=12 (21.3 +23.5 +25.7 +27.9 )−(12.4 +14.6 +16.8 +18.10 )
=12 (21.3 +23.5 +25.7 +27.9 )−12 (22.4 +24.6 +26.8 +28.10 )
=12 (1−13 +13 −15 +15 −17 +17 −19 )−12 (12 −14 +14 −16 +16 −18 +18 −110 )
=12 (1−19 )−12 (12 −110 )
=12 (1−19 −12 +110 )
Thực hiện phép tinh sau:
\(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+\frac{1}{5.7}+\frac{1}{6.8}+\frac{1}{7.9}+\frac{1}{8.10}\)
Ta có:
\(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+\frac{1}{5.7}+\frac{1}{6.8}+\frac{1}{7.9}+\frac{1}{8.10}\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{8}-\frac{1}{10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}....+\frac{1}{7}-\frac{1}{9}\right)+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{10}\right)\)
\(=\frac{1}{2}.\frac{8}{9}+\frac{1}{2}.\frac{2}{5}=\frac{1}{2}.\left(\frac{8}{9}+\frac{2}{5}\right)=\frac{1}{2}.\frac{58}{45}=\frac{29}{45}\)
\(D=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
Help me!~~~~~~~~~~~~~
Bài làm
D=ko viết lại đề
=1/1.3+1/1.5+1/5.7+1/7.9-1/2.4-1/4.6-1/6.8-1/8.10
=1+1/9-1-1/10
=10/9-9/10
=19/90
=(1/1.3+...+1/7.9)-(1/2.4+...+1/8.10)
=2(1/1.3+...+1/7.9)-2(1/2.4+...+1/8.10)
=(2/1.3+...+2/7.9)-(2/2.4+...+2/8.10)
=(1-1/3+...+1/7-1/9)-(1/2-1/4+ +1/8-1/10)
=1-1/9-1/2+1/10
tự tính tiếp nhé
<=> 2D = 2/1.3 - 2/2.4 + 2/3.5 - ... + 2/7.9 - 2/8.10
<=> 2D = 1 - 1/3 -1/2 + 1/4 + 1/3 - 1/5 -...+1/7 - 1/9 - 1/8 + 1/10
<=> 2D = 1 - 1/9 + 1/10
<=> 2D = 89/10
<=> D = 89/10 : 2 = 89/10 . 1/2 = 89/20
GẤP GẤP GẤP !!!!!!!!!!!!!!!!!
Tính giá trị biểu thức :
C = \(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{7.9}+\frac{1}{8.10}\)
tìm số nguyên -a biết :
a2 - 3,8 = \(\frac{9}{11}\)( \(\frac{1}{1.3}-\)\(\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\))
Tính nhanh
\(A=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+...+\frac{1}{8.10}\)
\(A=\frac{1}{1\times3}+\frac{1}{2\times4}+\frac{1}{3\times5}+\frac{1}{4\times6}+\frac{1}{5\times7}+\frac{1}{6\times8}+\frac{1}{7\times9}+\frac{1}{8\times10}\)
\(2A=\frac{2}{1\times3}+\frac{2}{2\times4}+\frac{2}{3\times5}+\frac{2}{4\times6}+\frac{2}{5\times7}+\frac{2}{6\times8}+\frac{2}{7\times9}+\frac{2}{8\times10}\)
\(2A=1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+\frac{1}{4}-\frac{1}{6}+\frac{1}{5}-\frac{1}{7}+\frac{1}{6}-\frac{1}{8}+\frac{1}{7}-\frac{1}{9}+\frac{1}{8}-\frac{1}{10}\)
\(2A=1+\frac{1}{2}-\frac{1}{9}-\frac{1}{10}\)
\(2A=\frac{58}{45}\)
\(A=\frac{58}{45}\div2\)
\(A=\frac{29}{45}\)
\(2A=\frac{2}{1.3}+\frac{2}{2.4}+...+\frac{2}{8.10}=1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-....+\frac{1}{8}-\frac{1}{10}\)
\(=1+\frac{1}{2}-\frac{1}{9}-\frac{1}{10}=\frac{58}{45}\)
\(A=\frac{29}{45}\)