Xác định hệ số a,b để: ax^3 bx^2-11x 30 chia hết cho x^2-3x-10.
Ai giải đúng và nhanh tick nha
xác định hệ số a,b để: ax^3+bx^2-11x+30 chia hết cho x^2-3x-10
Xác định các số a và b để ax^3+bx^2-11x+30 chia hết cho x^2-3x+10
Xác định a và b để ax3+bx2-11x+30 chia hết cho x2-3x-10
GIẢI DÙM MIK BẰNG CÁCH ĐẶT PHÉP TÍNH
Ta có (ax3 + bx2 - 11x + 30) : (x2 - 3x - 10) = ax + 3a + b (dư (19a +3b - 11)x + 10(b + 3a +3)]
Để (ax3 + bx2 - 11x + 30) \(⋮\) (x2 - 3x - 10) khi \(\hept{\begin{cases}19a+3b-11=0\\b+3a+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=-9\end{cases}}\)
Vậy a = 2 ; b = -9
xác định số a và b để:
a,ax3+bx2-11x+30 chia hết cho 3x2-2x+1
b,ax4+ bx3+ 1 chia hết cho x2-2x+1
c,x3+ax+b chia x-2 dư 12;chia x+1 dư -6
Xác định các số a và b để đa thức ax^3+bx^2-11x+10 chia hết cho đa thức x^2+x-2
Lời giải:
Đặt $f(x)=ax^3+bx^2-11x+10$
$x^2+x-2=(x-1)(x+2)$
Do đó để $f(x)\vdots x^2+x-2$ thì $f(x)\vdots x-1$ và $f(x)\vdots x+2$
$\Leftrightarrow f(1)=f(-2)=0$ (theo định lý Bê-du về phép chia đa thức)
$\Leftrightarrow a+b-1=-8a+4b+32=0$
$\Leftrightarrow a=3; b=-2$
Tìm a, b để:
ax3 + bx2 - 11x + 30 \(⋮\)x2 - 3x -10
Ai nhanh và đúng tick nhaa
Đặt \(f\left(x\right)=ax^3+bx^2-11x+30\)
Ta có : \(x^2-3x-10=\left(x+2\right)\left(x-5\right)\)
+) \(f\left(x\right)⋮x+2\)
\(\Leftrightarrow f\left(-2\right)=0\)
\(\Leftrightarrow-8a+4b-11.\left(-2\right)+30=0\)
\(\Leftrightarrow-8a+4b+22+30=0\)
\(\Leftrightarrow-8a+4b+52=0\)
\(\Leftrightarrow-2a+b+13=0\)( * )
+) \(f\left(x\right)⋮x-5\)
\(\Leftrightarrow f\left(5\right)=0\)
\(\Leftrightarrow125a+25b-11.5+30=0\)
\(\Leftrightarrow125a+25b-25=0\)
\(\Leftrightarrow5a+b-1=0\)
\(\Leftrightarrow-2a+7a+b+13-14=0\)
\(\Leftrightarrow\left(-2a+b+13\right)+\left(7a-14\right)=0\)( ** )
Từ ( * ) ; ( ** )
\(\Rightarrow7a-14=0\)
\(\Rightarrow7a=14\)
\(\Rightarrow a=2\)
\(\Rightarrow b=-9\)
Vậy với \(a=2;b=-9\) thì \(ax^3+bx^2-11x+30⋮x^2-3x-10\)
Xác định các số hữu tỉ a , b sao cho : x^4 + ax^3 + bx - 1 chia hết cho x^2 - 1
Ai làm nhanh và đúng m tick cho...
bài 1 :xác định các số hữu tỉ a, b để đa thức (x^4-3x^3+3x^2+ã+b) chia hết cho (x^2-3x+4)
bài 2: cho P(x) = x^4+ax^3+bx^2+cx+d. Biết P(1)=10; P(2)=20; P(3)=30. Tính P(12)-P(8)
:)) ai trả lời hộ tớ với ạ
Xác định hệ số ab để F(x) = x^4 - 3x^3 + x^2 + ax + b chia hết cho g(x) = x^2 - 3x +2
giải chi tiết giùm nha
Gọi thương của phép chia F(x) cho G(x) là A(x)
Ta có
G(x)=x^2-3x+2=(x-2)(x-1)
Ta có
F(x)=G(x).A(x)
<=>x^4 -3x^3+x^2+ax+b=(x-2)((x-1).A(x)
Với x=2
=>-4+2a+b=0
<=>2a+b=4(1)
Với x=1
=>-1+a+b=0
<=>a+b=1(2)
Từ (1) và (2)
Ta có
2a+b=4 và a+b=1
giải ra =>a=3,b=-2
nhớ tick mình nha