Những câu hỏi liên quan
TM
Xem chi tiết
TH
21 tháng 10 2017 lúc 22:28

Ta có: \(55+5\)1/1^2 + 1/2^2 + 1/3^2 + 1/4^2 +.....+ 1/50^2  =  1/1^2 + 1/2^2 + (1/3^2 + 1/4^2 +....+ 1/50^2 )

                                                                               <  1 + 1/4 + (1/2*3 + 1/3*4 +...+1/49*50) = 1 + 1/4 + (1/2 - 1/3 + 1/3 - 1/4+...+1/49 - 1/50 )

                                                                               = 1,73 = 173/100 (dpcm) 

Bình luận (0)
KT
Xem chi tiết
SS
3 tháng 3 2017 lúc 17:17

15135454

Bình luận (0)
H24
Xem chi tiết
.
12 tháng 2 2020 lúc 21:47

Ta có : \(\frac{1}{1^2}=1\)

           \(\frac{1}{2^2}< \frac{1}{1.2}\)

           \(\frac{1}{3^2}< \frac{1}{2.3}\)

           \(\frac{1}{4^2}< \frac{1}{3.4}\)

            ...

           \(\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow A< 2-\frac{1}{50}< 2\)

\(\Rightarrow A< 2\)

Vậy \(A< 2\)

Bình luận (0)
 Khách vãng lai đã xóa
Xem chi tiết
LC
10 tháng 11 2019 lúc 10:18

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(=1-\frac{1}{2020}< 1\)

Vậy \(A< 1\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
LC
10 tháng 11 2019 lúc 10:20

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{50}\)

\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}\)

\(\Leftrightarrow B< \frac{3}{4}\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
LC
10 tháng 11 2019 lúc 10:22

\(C=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}...+\frac{1}{100!}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(\Leftrightarrow C< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Leftrightarrow C< 2-\frac{1}{100}\)

\(\Leftrightarrow C< 2\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
JA
1 tháng 9 2016 lúc 10:15

Gọi biểu thức trên là A.

Chứng minh A > 50

\(A=1+\frac{1}{2}+\left(\frac{1}{2^1+1}+\frac{1}{2^2}\right)+\left(\frac{1}{2^2+1}+\frac{1}{6}+...+\frac{1}{2^3}\right)+...+\left(\frac{1}{^{2^{100-2}+1}}+...+\frac{1}{2^{100-1}}\right)\\ \)

\(A>1+\frac{1}{2}+\frac{1}{2^2}.2+\frac{1}{2^3}.2^2+...+\frac{1}{2^{100-1}}2^{100-2}\)

\(A>\left(\frac{1}{2}+\frac{1}{2}\right)+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)

\(< =>A>\frac{100}{2}=50\)

Chứng minh A<100

\(A=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{2^2}+\frac{1}{5}+...+\frac{1}{7}\right)+....+\left(\frac{1}{2^{100-2}}+\frac{1}{2^{100-2}+1}+...+\frac{1}{2^{100-1}-1}\right)\)-\(\frac{1}{2^{100-1}}\)

\(A< 1+\frac{1}{2}.2+\frac{1}{2^2}.2^2+...+\frac{1}{2^{100-2}}.2^{100-2}+\frac{1}{2^{100-1}}\)

\(A< 1+1+1+...+1+\frac{1}{2^{100-1}}\)

\(A< 1.99+\frac{1}{2^{100-1}}< 99+1=100\)

Bình luận (0)
TT
1 tháng 9 2016 lúc 13:03

ta có : 1+1/2+1/3+....+1/2^100-1   

= 1/2x2 +1/3x2 +1/4x2 +...+ 1/2^100 x2

= 2x(1/2+1/3+1/4+...+1/2^100)      

=.................... làm đến đây mk tịt

Bình luận (0)
TL
1 tháng 9 2016 lúc 13:06

mk có chacha

Bình luận (0)
H24
Xem chi tiết

??? Đăng cái j z

Bình luận (0)
NV
1 tháng 3 2022 lúc 7:56

ủa toán lớp mấy chứ ko phải lớp 1

Bình luận (0)
 Khách vãng lai đã xóa
NK
1 tháng 3 2022 lúc 8:01

uk ko phải toán lớp 1

Bình luận (0)
 Khách vãng lai đã xóa
PN
Xem chi tiết
TM
22 tháng 10 2017 lúc 19:56

Ta có: \(S=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1^2}+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)

\(\Rightarrow S< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow S< 2-\frac{1}{50}\)

Vậy S < 2

Bình luận (0)
SI
22 tháng 10 2017 lúc 19:47

cậu vào câu hỏi tương tự nhé !

Bình luận (0)
SI
22 tháng 10 2017 lúc 19:48

thật đấy

Bình luận (0)
DD
Xem chi tiết
MH
12 tháng 5 2018 lúc 22:29

Bai 2 : 

                    Ta co :

                            B = [ 2^1 + 2^2 + 2^3 + 2^4 + 2^5 = 2^6 ] + .... + [ 2^25 +  2^26 + 2^27 + 2^28 +2^29 +2^30 ]

                               = 2[1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 ] +.....+ 2^25[ 1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 ]

                             = 2 . 63 +.... + 2^25 . 63

                            = 63 [2 + ..... + 2^25 ] chia het cho 21 

  Vay B chia het cho 21

Bình luận (0)
MH
12 tháng 5 2018 lúc 22:19

Bai 1 :

Ta co :

               A = 1/1 + 1/2^2 + 1/3^3 + 1/4^4  + .... + 1?50^2 < 1/1 + 1/1.2 + 1/2.3 + ..... + 1/49.50

                                                                                           =>1 + 1/1 - 1/2 +1/2 -1/3 + .... +1/449 - 1/50

                                                                                           => 1 + 1/1 - 1/50

                                                                                            => 1 + 49/50

                                                                                          => 99/50 < 2

Vay 1 < 2  

Bình luận (0)
MH
15 tháng 5 2018 lúc 22:43

bai 1 minh ket luan nham

A < 2

Bình luận (0)
LT
Xem chi tiết
PH
13 tháng 8 2018 lúc 9:16

(: ko bít. tui giỏi tiếng anh nhưng ngu toán lắm

Bình luận (0)