Những câu hỏi liên quan
DB
Xem chi tiết
LP
27 tháng 10 2023 lúc 21:53

 Không mất tính tổng quát, giả sử \(a\ge b\). Khi đó ta cần chứng minh bổ đề sau:

 Bổ đề 1: Cho 2 số tự nhiên a, b khác 0. Khi đó ta có \(ab=\left(a,b\right)\left[a,b\right]\). Trong đó kí hiệu \(\left(a,b\right)\) và \(\left[a,b\right]\) lần lượt là ƯCLN và BCNN của 2 số a và b. 

 Chứng minh: Giả sử \(a=p_1^{n_1}p_2^{n_2}...p_k^{n_k}\) và \(b=p_1^{m_1}p_2^{m_2}...p_k^{m_k}\) với \(p_1,p_2,...,p_k\) là các số nguyên tố phân biệt và \(n_1,n_2,...,n_k,m_1,m_2,...,m_k\) là các số tự nhiên. Ta có

\(\left(a,b\right)=p_1^{min\left\{n_1,m_1\right\}}p_2^{min\left\{n_2,m_2\right\}}...p_k^{min\left\{n_k,m_k\right\}}\)

và \(\left[a,b\right]=p_1^{max\left\{n_1,m_1\right\}}p_2^{max\left\{n_2,m_2\right\}}...p_k^{max\left\{n_k,m_k\right\}}\)

 \(\Rightarrow\left(a,b\right)\left[a,b\right]=p_1^{min\left\{n_1,m_1\right\}+max\left\{n_1,m_1\right\}}p_2^{min\left\{n_2,m_2\right\}+max\left\{n_2,m_2\right\}}...p_k^{min\left\{n_k,m_k\right\}+max\left\{n_k,m_k\right\}}\)

\(=p_1^{m_1+n_1}.p_2^{m_2+n_2}...p_k^{n_k+m_k}\)

\(=ab\)

 Vậy bổ đề 1 được chứng minh. Áp dụng bổ đề này cho 2 số a, b, ta có \(ab=\left[a,b\right]\left(a,b\right)=300.15=4500\)

 Do \(a\ge b\) \(\Rightarrow4500=ab\ge b^2\Leftrightarrow b\le67\). Mà 15 là ước của b nên \(b\in\left\{15,30,45,60\right\}\)

 \(b=15\) thì \(a=300\), thỏa mãn.

 \(b=30\) thì \(a=150\), không thỏa.

 \(b=45\) thì \(a=100\), không thỏa.

 \(b=60\) thì \(a=75\), thỏa mãn.

 Vậy \(\left(a,b\right)\in\left\{\left(15,300\right);\left(300,15\right);\left(60,75\right);\left(75,60\right)\right\}\)  là các cặp số a, b thỏa mãn yêu cầu bài toán.

Bình luận (0)
NA
Xem chi tiết
TH
Xem chi tiết
H24
3 tháng 11 2015 lúc 15:48

 Câu1. a/b = 36/45 = 4/5 
suy ra ƯCLN = a/4. 
Mà BCNN = ab/ƯCLN 
suy ra 300 = ab/(a/4) 
suy ra b = 75 
suy ra a = 60 

Bình luận (0)
LM
Xem chi tiết
.
16 tháng 4 2020 lúc 22:04

Ta có : \(\left[a,b\right]=300\) và \(\left(a,b\right)=15\)\(\Rightarrow ab=\left[a,b\right].\left(a,b\right)=300.15=4500\)

Vì \(\left(a,b\right)=15\Rightarrow\hept{\begin{cases}a⋮15\\b⋮15\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=15m\\b=15n\\\left(m,n\right)=1\end{cases}}\)

Mà \(ab=4500\)

\(\Rightarrow15m.15n=4500\)

\(\Rightarrow225m.n=4500\)

\(\Rightarrow mn=20\)

Vì \(\left(m,n\right)=1\)nên ta có bảng sau :

m     1          20          4          5

n      20        1            5          4

a      15        300        60        75

b      300       15         75        60

Vậy \(\left(a;b\right)\in\left\{\left(15;300\right);\left(300;15\right);\left(60;75\right);\left(75;60\right)\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
TK
Xem chi tiết
AH
16 tháng 12 2023 lúc 14:24

Lời giải:

Vì $ƯCLN(a,b)=15$ nên đặt $a=15x, b=15y$ trong đó $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.

Ta có:

$BCNN(a,b)=15xy=300$

$\Rightarrow xy=300:15=20$

Vì $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,20), (4,5), (5,4), (20,1)$

$\Rightarrow (a,b)=(15,300), (60,75), (75,60), (300,15)$

Bình luận (0)
TK
Xem chi tiết
TK
Xem chi tiết
NH
16 tháng 12 2023 lúc 12:59

Theo bài ra ta có: a = 15.k; b = 15.d  (k;d) = 1 

⇒ a.b = 15.k.15.d ⇒a.b = 300.15

⇒ 15.k.15.d = 300.15 ⇒ k.d = 300.15:15:15 ⇒ k.d = 20

Mặt khác ta cũng có: 15.k + 15 = 15.d

                                15.(k + 1)  = 15d 

                                      k + 1    =  d ⇒ k = d - 1

Thay k = d - 1 vào k.d = 20 ta có: (d-1).d = 20 ⇒ (d-1).d = 4.5 ⇒ d = 5

           k = 5 - 1 = 4

Vậy a = 15.4 = 60; b = 60 + 15 = 75

Kết luận vậy (a;b)  =(60; 75)

 

 

 

 

Bình luận (0)
H24
Xem chi tiết
TH
26 tháng 2 2015 lúc 17:11

a*b=5*300=1500

a=5k, b=5k1

5k*5k1=1500

hay25*k*k1=1500k*k1=60 rồi ddawtjj từng trường hợp

Bình luận (0)
PN
26 tháng 2 2015 lúc 20:13

a. b =UCLN . BCNN

Suy ra:a.b = 5.300=1500

Va a=5 b=300

Bình luận (0)
YD
Xem chi tiết