Tìm GTNN của biểu thức P=\(\frac{x^4+2x^2+2}{x^2+1}\)
Bài 1: Cho biểu thức P=\(\frac{x^4-x}{x^2+x+1}-\frac{2x^2+x}{x}+\frac{2\left(x^2-1\right)}{x-1}\)
a) Rút gọn P.
b) Tìm GTNN của P.
c) Tìm các giá trị dương của x để biểu thức Q=\(\frac{2x}{P}\) nhận giá trị là số nguyên.
Tìm a) GTNN của biểu thức B=|2x+6|+2+2x
b) GTLN của biểu thức C=\(\frac{4-\left|x-y+1\right|}{5+\left|x+y+1\right|}\)
Tìm GTNN của biểu thức \(y=\frac{x^2+x+1}{x^2+2x+2}\)
tìm GTNN của biểu thức \(y=\frac{x^2+x+1}{x^2+2x+2}\)
\(Y=\frac{x^2+x+1}{x^2+2x+2}=1-\frac{x+1}{x^2+2x+2}.Y_{min}\Leftrightarrow\frac{x+1}{x^2+2x+2}.Dat:GTLN\)
\(1-\frac{x+1}{x^2+2x+2}\ge\frac{1}{2}\)
Dấu "=" xảy ra khi:
x=0
Thôi biết người t i c k sai 3 cái cho tui ngu rồi ko cần phải t i c k sai nx đâu
tìm GTNN của : |3x-7|+|3x-2|+8
cho x-y =2 . Tìm GTNN của biểu thức B= |2x+1|=|2y+1|
tìm GTLN của : x+\(\frac{1}{2}\)-|x-\(\frac{2}{3}\)|
|3x-7|+|3x-2|+8 >= 5+8 = 13
Dấu "=" xảy ra <=> 3/2 <= x <= 7/3
k mk nha
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
1)Tìm GTNN của biểu thức :
\(A=\left(2x+\frac{1}{3}\right)^4-10\)
B=/2x-2/3/+(y+1/4)^4-1
b) Tìm GTLN của biểu thức sau:
\(C=-\left(\frac{3}{7}x-\frac{4}{15}\right)^6+3\)
D=-/x-3/-/2y+1/+15
Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)
1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :
\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)
\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :
\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)
2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :
\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)
\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)
Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)
1. Cho biểu thức:
\(A=\frac{x^2+2x+3}{\left(x+2\right)^2}\)
Tìm GTNN của biểu thức A
\(A=\frac{x^2+2x+3}{x^2+4x+4}-\frac{2}{3}+\frac{2}{3}\)
\(=\frac{x^2-2x+1}{\left(x+2\right)^2}+\frac{2}{3}\)
\(=\frac{\left(x-1\right)^2}{\left(x+2\right)^2}+\frac{2}{3}\)
\(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(x+2\right)^2\ge0\end{cases}\Rightarrow\frac{\left(x-1\right)^2}{\left(x+2\right)^2}\ge0}\)
Dấu '' ='' xảy ra khi và chỉ khi x=1
=> Min A =2/3 khi x=1
1. Tìm GTLN của P=1+\(\frac{1}{x}\)với x≥1
2. Cho x>0, tìm GTNN của P=x+\(\frac{1}{x}\)
3. Cho x>0, tìm GTNN của biểu thức:
\(A=\frac{x^2+x+4}{x+1}\)
4. Cho x>0. Tìm GTNN của P=x2+\(\frac{2}{x}\)
5.Cho x>0. Tìm GTNN của 2x+\(\frac{1}{x^2}\)
6. Tìm GTNN của P=x2-x+\(\frac{1}{x}\)+4 với x>0
7. Cho x≥1. Tìm GTNN của: \(y=\frac{x+2}{x+1}\)
8.Tìm GTLN và GTNN của: \(A=\frac{2x}{x^2+1}\)
1. x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)
2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)
3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)
áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)
x=1 nhe nhap minh di ma ket ban voi minh nhe
cho x > \(\frac{1}{4}\)tìm GTNN của biểu thức: A= \(\frac{2x-\sqrt{x}+8}{2\sqrt{x}-1}\)