Những câu hỏi liên quan
NB
Xem chi tiết
ST
22 tháng 2 2017 lúc 20:13

a, \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(\Rightarrow1< 1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

Mà \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1+1-\frac{1}{50}=2-\frac{1}{50}< 2\)

\(\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 2\Rightarrow A< 2\left(đpcm\right)\)

b, B = 2 + 22 + 23 +...+ 230

= (2+22+23+24+25+26)+...+(225+226+227+228+229+230)

= 2(1+2+22+23+24+25)+...+225(1+2+22+23+24+25)

= 2.63+...+225.63

= 63(2+...+225)

Vì 63 chia hết cho 21 nên 63(2+...+225) chia hết cho 21 

Vậy B chia hết cho 21

Bình luận (0)
NB
22 tháng 2 2017 lúc 20:42

Cảm ơn bn nhìu nha !!! 

Bình luận (0)
LC
Xem chi tiết
MT
13 tháng 1 2017 lúc 18:44

ình cũng định hỏi câu này

Bình luận (0)
ND
15 tháng 1 2017 lúc 7:27

Lương Nhất Chi

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\\ =1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{49}+\frac{1}{50}-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{50}\right)\\=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{49}+\frac{1}{50}-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{25}\right) \\ =\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}\)

Đừng giận nữa nha má !!!!

Bình luận (0)
PQ
Xem chi tiết
H24
16 tháng 3 2018 lúc 19:27

Đăng từ bài thôi bạn à!

a) Áp dụng công thức: \(\frac{1}{a-1}-\frac{1}{a}=\frac{1}{\left(a-1\right)a}>\frac{1}{a.a}=\frac{1}{a^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1}-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{4^2}< \frac{1}{3}-\frac{1}{4}\)

..............................

\(\frac{1}{n^2}< \frac{1}{n-1}-\frac{1}{n}\)

___________________________________________

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}=\frac{1}{n+1}< 1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\) (đpcm)

Bình luận (0)
NT
Xem chi tiết
QN
Xem chi tiết
PQ
1 tháng 4 2018 lúc 21:06

Ta có : 

\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\)

\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)

\(2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)

\(B=1-\frac{1}{2^{2016}}\)

\(B=\frac{2^{2016}-1}{2^{2016}}< 1\)

Vậy \(B< 1\)

Chúc bạn học tốt ~ 

Bình luận (0)
TG
1 tháng 4 2018 lúc 20:31

Ta có: 2B=1+1/2+1/2^2+...+1/2^2015

2B-B=(1+1/2+1/2^2+...+1/2^2015)-(1/2+1/2^2+1/2^3+...+1/2^2016)

B=1-1/2^2015<1

 Vậy B<1

Bình luận (0)
CT
1 tháng 4 2018 lúc 20:32

B.2=1+1/2+1/22 +...+1/22015

B.2-B=B=1-1/22016 <1

=> B<1

Bình luận (0)
CY
Xem chi tiết
GC
29 tháng 8 2016 lúc 7:46

a) 

Gọi d là ước chung của tử và mẫu 

=> 12n + 1 chia hết cho d              60n + 5 chia hết cho d 

                                        => 

 30n +2 chia hết cho d                      60n + 4 chia hết cho d 

=> ( 60n + 5 ) - ( 60n + 4 ) chia hết cho d 

=> 1 chia hết cho d 

=> d = 1 => ( đpcm )

Bình luận (0)
PQ
1 tháng 3 2018 lúc 20:19

Câu a) làm rồi mình làm câu b) nhé 

\(b)\)Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

 Ta có : 

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy \(A< 1\)

Bình luận (0)
TN
12 tháng 4 2020 lúc 9:54

b) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)

=\(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\)

Có \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

Có \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

=\(\frac{1}{1}-\frac{1}{100}\)

=\(\frac{99}{100}\)

Vì \(\frac{99}{100}< 1\) 

mà \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{99}{100}\)

nên \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)<1

Vậy.....

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
14 tháng 3 2020 lúc 22:24

_ giải bừa :v _

\(T=\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{14^2}\)

Ta thấy : \(\frac{1}{4^2}< \frac{1}{2.4};\frac{1}{14^2}< \frac{1}{12.14}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{14^2}< \frac{1}{2^2}+\frac{1}{2.4}+...+\frac{1}{12.14}\)

\(\Rightarrow T< \frac{1}{2^2}+\frac{1}{2}\left(\frac{2}{2.4}+...+\frac{2}{12.14}\right)\)

\(\Rightarrow T< \frac{1}{2^2}+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{14}\right)\)

\(\Rightarrow T< \frac{1}{4}+\frac{1}{2}.\frac{3}{7}\)

\(\Rightarrow T< \frac{13}{28}\)

Mà \(\frac{13}{28}< \frac{1}{2}\Rightarrow T< \frac{1}{2}\)

....

Bình luận (0)
 Khách vãng lai đã xóa
LM
Xem chi tiết
NH
Xem chi tiết
HP
17 tháng 5 2016 lúc 14:58

Đặt \(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+....+\frac{1}{100^2}\)

Ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};\frac{1}{5^2}< \frac{1}{4.5};......;\frac{1}{100^2}< \frac{1}{99.100}\)

\(=>A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}\)

\(=>A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=>A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

Vậy \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.....+\frac{1}{100^2}< \frac{1}{2}\left(đpcm\right)\)
 

Bình luận (0)
NB
17 tháng 5 2016 lúc 15:00

Bạn xem lời giải của mình nhé:

Giải:

Gọi \(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)

\(\frac{1}{3^2}< \frac{1}{3.4}\\ \frac{1}{4^2}< \frac{1}{4.5}\\ ...\\ \frac{1}{100^2}< \frac{1}{99.100}\\ \Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{3}-\frac{1}{100}\\ \frac{1}{3}< \frac{1}{2}\Rightarrow\frac{1}{3}-\frac{1}{100}< \frac{1}{2}\\ \Rightarrow A< \frac{1}{2}\)

Chúc bạn học tốt!hihi

Bình luận (0)
HP
17 tháng 5 2016 lúc 15:09

Nguyễn Thế Bảo sai rồi,1/3^2<1/2.3 chứ sao là 1/3.4 đc?

Bình luận (0)