Những câu hỏi liên quan
NK
Xem chi tiết
PV
Xem chi tiết
BT
28 tháng 7 2021 lúc 9:29

Ta có

   n4 + 4 = n4 + 4n2 + 4 – 4n2

             = (n2 + 2 )2 – (2n)2

            = (n2 + 2 – 2n )(n2 + 2 + 2n)

Vì n4 + 4 là số nguyên tố nên  n2 + 2 – 2n = 1 hoặc  n2 + 2 + 2n = 1

Mà   n2 + 2 + 2n > 1 vậy  n2 + 2 – 2n = 1 suy ra n = 1

Thử lại : n = 1 thì 14 + 4 = 5 là số nguyên tố

Vậy với n = 1 thì  n4 + 4  là số nguyên tố.

 

Bình luận (0)
VD
Xem chi tiết
KV
11 tháng 2 2019 lúc 13:45

Theo quy tắc so sánh các phân số có cùng tử dương, ta có :

              \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a}{a+c}\)       (1)

               \(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b}{b+d}\) (2)

             \(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c}{c+d}\) (3)

              \(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d}{d+b}\) (4)

Cộng (1) ; (2) ; (3) ; (4) theo từng vế ta được :

\(1=\frac{a+b+c+d}{a+b+c+d}< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+c}{a+c}+\frac{b+d}{b+d}=2\)

Bình luận (0)
VP
Xem chi tiết
TH
7 tháng 5 2022 lúc 16:22

-Áp dụng BĐT Caushy Schwarz cho các cặp số dương (1,1) ở tử và (a,b) ở mẫu ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{\left(1+1\right)^2}{a+b}=\dfrac{4}{a+b}\)

-Dấu "=" xảy ra khi \(a=b\).

 

Bình luận (0)
TH
7 tháng 5 2022 lúc 16:25

-Hoặc có thể c/m bằng phép biến đổi tương đương:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)ab.\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}.\left(a+b\right)ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

-Dấu "=" xảy ra khi \(a=b\)

Bình luận (0)
NH
Xem chi tiết
GA
14 tháng 4 2019 lúc 13:15

Ô...mai..gót

Thế này ko ai giải cho bn đâu vì họ ko dại gì làm tất cả chỉ để lấy cái T.I.C.K

Hãy đăng từng câu một 

Ai đồng quan điểm

Bình luận (0)
TL
14 tháng 4 2019 lúc 13:42

Bạn lấy mấy bài này từ mấy cái đề học sinh giỏi vậy ?

Bình luận (0)
NH
14 tháng 4 2019 lúc 13:42

Nhưng ai biết câu nào thì làm câu đấy mình đâu bắt các bạn làm hết đâu

Bình luận (0)
DT
Xem chi tiết
NK
24 tháng 1 2016 lúc 17:39

Gọi UCLN(m; mn + 8) là d

=> m chia hết cho d => mn chia hết cho d

và mn + 8 chia hết cho d

Do đó 8 chia hết cho d => d thuộc {1; 2; 4; 8}

Mà m lẻ và m chia hết cho d => d lẻ

Do đó d = 1

=> UCLN(m; mn + 8) = 1

hay 2 số này nguyên tố cùng nhau

Vậy...

Bình luận (0)
LC
Xem chi tiết
BY
12 tháng 7 2019 lúc 23:10

bạn có thể áp dụng cái cuối

Kết quả hình ảnh cho (a + b)2

Bình luận (0)
H24
12 tháng 7 2019 lúc 23:12

Ta có:

\(a^3+b^3+c^3=3abc\)

\(\Rightarrow\left(a^3+b^3\right)+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3+3abc=0\)

\(\Rightarrow[\left(a+b\right)^3+c^3]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)[\left(a+b\right)^2-\left(a+b\right)c+c^2]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc-3ab\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a+b+c=0\left(1\right)\\a^2+b^2+c^2-ab-bc-ac=0\left(2\right)\end{cases}}\)

Từ (1) => a = b = c (vì a ; b ; c là các số dương)

Giải (2) ta có:

\(2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Rightarrow2a^2+2b^2-2ab-2bc-2ac=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

Vì \(\left(a-b\right)^2\ge\forall a,b\)

\(\left(a-c\right)^2\ge\forall a,c\)

\(\left(b-c\right)^2\ge\forall b,c\)

\(\Rightarrow\)Ta có: \(a-b=a-c=b-c\Rightarrow a=b=c\)

Bình luận (0)
NH
Xem chi tiết
LC
9 tháng 9 2015 lúc 21:36

Gỉa sử n=3=>3n+1=3.3+1=9+1=10

                      4n+2=4.3+2=12+2=14

mà (10,14)=2

=>Vô lí

Bạn xem lại đề nha.

Bình luận (0)
H24
Xem chi tiết