Những câu hỏi liên quan
TT
Xem chi tiết
KK
6 tháng 3 2019 lúc 22:42

A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)

A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

A = \(1-\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}-\frac{1}{3}\right)-...-\left(\frac{1}{2016}-\frac{1}{2016}\right)-\frac{1}{2017}\)

A = \(1-0-0-0...-0-\frac{1}{2017}\)

A = \(1-\frac{1}{2017}< 1\)

Bình luận (0)
TV
6 tháng 3 2019 lúc 22:43

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(A=1-\frac{1}{2017}=\frac{2016}{2017}< \frac{2017}{2017}=1\)

=> A<1(đpcm)

Bình luận (0)
VH
7 tháng 3 2019 lúc 11:52
1/1×2+1/2×3+1/3×4+...+1/2016×2017 =1/1-1/2+1/2-1/3+1/3-1/4+...+1/2016-1/2017 =1/1-1/2017<1 =>A<1 Vậy A<1
Bình luận (0)
NK
Xem chi tiết
NQ
30 tháng 4 2015 lúc 17:04

Ta có : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

Vì \(\frac{49}{50}

Bình luận (0)
H24
Xem chi tiết
BC
25 tháng 3 2015 lúc 11:01

Gọi \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

          \(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

           \(A=1-\frac{1}{100}\)(TỐI GIẢN CÁC PHÂN SỐ LẬP LẠI )

           \(A=\frac{99}{100}

Bình luận (0)
DD
10 tháng 1 2022 lúc 7:44

Ta có \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
        \(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}\)
        = \(\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+\frac{4}{3.4}-\frac{3}{3.4}+...+\frac{100}{99.100}-\frac{99}{99.100}\)
        =\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
        =   \(1-\frac{1}{100}\)
        =     \(\frac{99}{100}\)
Vậy\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}< 1\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết

vi /chia au cong thi cha be hon a

Bình luận (0)
LA
11 tháng 4 2018 lúc 19:17

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)

Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)< 1

~~~

#Sunrise

Bình luận (0)
KB
11 tháng 4 2018 lúc 19:17

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\)

\(\Rightarrowđpcm\)

Bình luận (0)
TT
Xem chi tiết
NC
Xem chi tiết
NT
14 tháng 3 2017 lúc 15:57

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

vậy...

k mình nha

Bình luận (0)
LT
14 tháng 3 2017 lúc 15:58

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\left(dpcm\right)\)

Bình luận (0)
PG
14 tháng 3 2017 lúc 16:00

\(\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)

\(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

\(⋮\)

\(\frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{1}-\frac{1}{100}\)

\(\frac{99}{100}\)

Mà : \(\frac{99}{100}< 1\)

=>  \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}< 1\left(đpcm\right)\)

Bình luận (0)
TL
Xem chi tiết
AA
8 tháng 4 2017 lúc 8:38

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}< 1\)

Ta có: \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}< 1\)

=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}< 1\)

= \(\dfrac{1}{1}-\dfrac{1}{50}< 1\)

= \(\dfrac{50}{50}+\dfrac{-1}{50}< 1\)

= \(\dfrac{49}{50}< 1\)

Vậy \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}< 1\)

Bình luận (0)
ST
8 tháng 4 2017 lúc 8:37

1/1.2 = 2 đã lớn hơn 1 rồi @@

Bình luận (0)
KG
Xem chi tiết
DN
Xem chi tiết
NA
29 tháng 2 2016 lúc 20:18

Phần chứng tỏ quy đồng lên rồi tính là ra

Còn phần tính S thì áp dụng tính chất vừa chứng tỏ để tách ra

Kết quả là 49/50

Bình luận (0)
TT
19 tháng 4 2016 lúc 17:50

49/50

Bình luận (0)