So sánh các phân số sau: a) A= 20^8+1/20^9+1 và B= 20^9+1/20^10+1
b) C=54.107-53/53.107+54
So sánh các phân số sau: a) A= 20^8+1/20^9+1 và B= 20^9+1/20^10+1
b) C=54.107-53/53.107+54 và D= 135.269-133 /134.269+135
a, A = \(\frac{20^8+1}{20^9+1}\)
so sánh các phân số sau:
a, 27/82 và 26/75
b, -49/78 và 64/-95
c, A = 54.107- 53/ 53.107+54 VÀ B = 135.269 -133/134.269+135
d, A = 310+1/ 39+ 1 và B= 39+ 1 / 38+ 1
a) 27/82 < 26/75 ( 2025/6250 < 2132\6250)
b) -49/78 > 64/ -95 ( - 3136/7410 > -4992/7410)
c) ta có: \(A=\frac{54.107-53}{53.107}=\frac{53.107+(107-53)}{53.107+54}=\frac{53.107+54}{53.107+54}=1\)
\(B=\frac{135.269-133}{134.269+135}=\frac{134.269+\left(269-133\right)}{134.269+135}=\frac{134.269+136}{134.269+135}>1\)
\(\Rightarrow A< B\)
d) ta có: \(A=\frac{3^{10}+1}{3^9+1}=\frac{3.\left(3^9+1\right)-2}{3^9+1}=\frac{3.\left(3^9+1\right)}{3^9+1}-\frac{2}{3^9+1}=3-\frac{2}{3^9+1}\)
\(B=\frac{3^9+1}{3^8+1}=\frac{3.\left(3^8+1\right)-2}{3^8+1}=\frac{3.\left(3^8+1\right)}{3^8+1}-\frac{2}{3^8+1}=3-\frac{2}{3^8+1}\)
mà \(\frac{2}{3^9+1}< \frac{2}{3^8+1}\Rightarrow3-\frac{2}{3^9+1}< 3-\frac{2}{3^8+1}\)
=> A < B
So sánh các phân số sau
a,A=\(\frac{54.107-53}{53.107+54}\) và B=\(\frac{135.269-133}{134.269+135}\) b, A=\(\frac{3^{10+1}}{3^9+1}\) và B=\(\frac{3^9+1}{3^8+1}\)
Mọi người làm ơn giúp với!! Đang cần gấp gấp...
Bso sánh:
a. -2525/2929 và -217/245
b. A= 54.107 - 53/ 53.107+54 và B= 135.269 - 133/ 134.269 + 135
c. A= 3^10 + 1/ 3^9 + 1và B= 3^9+1/3^8+1
So sánh các phân số sau:
A= (20^8+1)/(20^9+1) và B=( 20^9+1)/(20^10+1)
mọi người giúp em với ạ
Ta có: A=\(\frac{20^8+1}{20^9+1}\)
=>20A=\(\frac{20^9+20}{20^9+1}\)=\(\frac{20^9+1+19}{20^9+1}=1+\frac{19}{20^9+1}\)
Lại có B=\(\frac{20^9+1}{20^{10}+1}\)
=>20B=\(\frac{20^{10}+20}{20^{10}+1}\)=\(\frac{20^{10}+1+19}{20^{10}+1}=\frac{20^{10}+1}{20^{10}+1}+\frac{19}{20^{10}+1}=1+\frac{19}{20^{10}+1}\)
Ta thấy \(20^9+1< 20^{10}+1\)
=>\(\frac{19}{20^9+1}>\frac{19}{20^{10}+1}\)
=>\(1+\frac{19}{20^9+1}>1+\frac{19}{20^{10}+1}\)
hay A>B
Vậy A>B
Xin lỗi vì sau 1 thời gian dài mới làm vì mik nghĩ bạn cx làm xong rồi nhưng coi như mik làm để tập quen vs nâng cao ik
So sánh các số nguyên sau a) 13 và 20; b, -8 và 1 c, 13 và 20 d, 9 và -1
Bài 1:Chứng tỏ rằng các phân số sau tối giản với mọi n
\(a,\frac{n+1}{2n+3}\) \(b,\frac{2n+3}{4n+8}\) \(c,\frac{2n+1}{3n+2}\)
Bài 2: So sánh các phân số sau:
\(a,A=\frac{54.107-53}{53.107+54}vàB=\frac{135.269-133}{134.269+135}\)
\(b,A=\frac{3^{10}+1}{3^9+1}vàB=\frac{3^9+1}{3^8+1}\)
bài 2
a, TS= 54 . 107 -53=(53+1) .107-53=53.107+107-53=53.107+ 54
<=>
\(\frac{TS}{MS}\)=\(\frac{54.107+54}{54.107+54}\)=1
Bài 1 :
\(a)\) Gọi \(ƯCLN\left(n+1;2n+3\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)
\(\Rightarrow\)\(\left(2n+2\right)-\left(2n+3\right)⋮d\)
\(\Rightarrow\)\(2n+2-2n-3⋮d\)
\(\Rightarrow\)\(\left(-1\right)⋮d\)
\(\Rightarrow\)\(d\inƯ\left(-1\right)\)
Mà \(Ư\left(-1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(d\in\left\{1;-1\right\}\)
Do đó :
\(ƯCLN\left(n+1;2n+3\right)=\left\{1;-1\right\}\)
Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản với mọi n
Chúc bạn học tốt ~
Bài 2 :
\(a)\) Ta có :
\(A=\frac{54.107-53}{53.107+54}=\frac{\left(53+1\right)107-53}{53.107+54}=\frac{53.107+107-53}{53.107+54}=\frac{53.107+54}{53.107+54}=1\)
\(B=\frac{135.269-133}{134.269+135}=\frac{\left(134+1\right)269-133}{134.269+135}=\frac{134.269+269-133}{134.269+135}=1+\frac{1}{134.269+135}>1\)
Vậy \(A< B\)
Chúc bạn học tốt ~
So sánh các phân số sau theo cách thuận tiện nhất:
a.\(\frac{17}{19}\)và \(\frac{19}{17}\)
b.\(\frac{15}{7}\)và \(\frac{25}{12}\)
c.A=\(\frac{3^{10}+1}{3^9+1}\)và B= \(\frac{3^9+1}{3^8+1}\)
d.A=\(\frac{54.107-53}{53.107+54}\)và B=\(\frac{135.269-133}{134.269+135}\)
a.Vì \(\frac{17}{19}< 1\) và \(\frac{19}{17}>1\)
nên \(\frac{17}{19}< 1< \frac{19}{17}\)
hay \(\frac{17}{19}< \frac{19}{17}\)
b) \(\frac{15}{7}=2\frac{1}{7}\) và \(\frac{25}{12}=2\frac{1}{12}\)
Vì \(2\frac{1}{7}>2\frac{1}{12}\) nên \(\frac{15}{7}>\frac{25}{12}\)
\(A=\frac{54.107-53}{53.107+54}\)
\(\Leftrightarrow A=\frac{53.107+107-53}{53.107+54}\)
\(\Leftrightarrow A=\frac{53.107+54}{53.107+54}\)
\(\Leftrightarrow A=1\)
\(B=\frac{135.269-133}{134.269+135}\)
\(\Leftrightarrow B=\frac{134.269+269-133}{134.269+135}\)
\(\Leftrightarrow B=\frac{134.269+135}{134.269+135}\)
\(\Leftrightarrow B=1\)
Vì 1 = 1 nên A =B
a)Tìm các số nguyên x,y biết (x-3)(y-3) = 9
b)So sánh hai phân số A = 10^19 + 1/10^20 + 1 ; B = 10^20 + 1/10^21 + 1
a) (x - 3)(y - 3) = 9 = 1.9 = 3.3
Lập bảng:
x - 3 | 1 | -1 | 3 | -3 | 9 | -9 |
y - 3 | 9 | -9 | 3 | -3 | 1 | -1 |
x | 4 | 2 | 6 | 0 | 12 | -3 |
y | 12 | -6 | 6 | 0 | 4 | 2 |
Vậy ...
b) A = \(\frac{10^{19}+1}{10^{20}+1}\) => 10A = \(\frac{10^{20}+10}{10^{20}+1}=1+\frac{9}{10^{20}+1}\)
B = \(\frac{10^{20}+1}{10^{21}+1}\) => 10B = \(\frac{10^{21}+10}{10^{21}+1}=1+\frac{9}{10^{21}+1}\)
Do \(10^{20}+1< 10^{21}+1\) => \(\frac{9}{10^{20}+1}>\frac{9}{10^{21}+1}\) => 10A > 10B => A > B