Cho x,y>0 thỏa mãn x+y bé hơn hoặc bằng 4
Tìm Min A=\(\frac{2}{x^2+y^2}\) + \(\frac{35}{xy}\) +2xy
cho các số thực x.y dương thỏa mãn x+y\(\le4\),,tìm min của p=\(\frac{2}{x^2+y^2}+\frac{35}{xy}+2xy\)
Áp dụng nè : \(\frac{2}{x^2+y^2}+\frac{2}{2xy}\ge\frac{8}{\left(x+y\right)^2}\ge\frac{1}{2}\)
BẠn cố gắng áp dụng chọn điểm rơi và bđt nè :\(\frac{2}{x^2+y^2} +\frac{2}{2xy}\ge\frac{8}{\left(x+y\right)^2}\)
Nếu ko lm đc tiwps vui lòng cmt
Tìm x,y biết:
a) x^2 - 12x + 35 bé hơn hoặc =0
Cho x+y+xy=15. Tìm GTNN của M= 4 ( x^2+y^4 )
Cho các số thực a,b,c thỏa mãn điều kiện a^2+b^2+c^2=1. CMR: -1/2 bé hơn hoặc bằng ab+ac+bc bé hơn hoặc bằng 1
cho các số x,y,z đôi một khác nhau sao cho 0 bé hơn hoặc bằng x<y<z bé hơn hoặc bằng 2
Tìm min \(\frac{1}{\left(x-y\right)^2}+\frac{1}{\left(y-z\right)^2}+\frac{1}{\left(z-x\right)^2}\)
Cho x,y > 0 thỏa mãn x+y=1. Tìm Min A=\(\frac{1}{x^2+y^2}+\frac{1}{xy}\)
\(A=\frac{1}{x^2+y^2}+\frac{2}{2xy}\ge\frac{\left(1+\sqrt{2}\right)^2}{x^2+y^2+2xy}=\frac{\left(1+\sqrt{2}\right)^2}{\left(x+y\right)^2}=3+2\sqrt{2}\)
Amin =\(3+2\sqrt{2}\) khi x =y =1/2
(mình giải đc 2 ý ,còn lại nhờ các bạn)
Cho x,y dương thảo mãn xy bé hơn hoặc bằng y-1. Tìm GTLN
\(P=\frac{x+y}{\sqrt{x^2-xy+3y^2}}-\frac{x-2y}{6\left(x+y\right)}\)
Cho x>0,y>0 thỏa mãn x+y bé hơn hoặc bằng 1
CMR: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Áp dụng bđt Cauchy - Schwarz dạng Engel, ta được:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Thật ra bài này không cần điều kiện \(x+y\le1\)thì \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)vẫn đúng với x,y dương và x = y.
Mình nghĩ nên chứng minh \(\frac{1}{x}+\frac{1}{y}\ge4\)thì điều kiện \(x+y\le1\) sẽ có nghĩa!
\(x,y>0\)thỏa mãn \(x\ge2y\).Tìm \(min\)\(A=\frac{2x^2+y^2-2xy}{xy}\)
Ta có:
\(A=\frac{2x^2+y^2-2xy}{xy}=\frac{\left(x^2-4xy+4y^2\right)+x^2+2xy-3y^2}{xy}=\frac{\left(x-2y\right)^2+x^2+2xy-3y^2}{xy}\)
\(=\frac{\left(x-2y\right)^2}{xy}+\frac{x}{y}+2+\frac{-3y}{x}\ge0+2+2+\frac{-3}{2}=\frac{5}{2}\)
Vậy minA = \(\frac{5}{2}\)khi x = 2y.
2.Cho x,y>0 thỏa mãn x+y=1.Tìm min của A=\(\frac{1}{x^2+y^2}\)+\(\frac{2}{xy}\) +4xy
\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)
\(\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}+2+\frac{5}{\left(x+y\right)^2}=4+2+5=11\)
A = \(\frac{7}{2}\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)-\frac{5}{2\left(x^2+y^2\right)}\)
Áp dụng bđt cauchy là ra bài