Những câu hỏi liên quan
LC
Xem chi tiết
H24
8 tháng 11 2017 lúc 13:12

bạn dùng máy tính ấn. \(\sqrt{8}\). Nó ra hàng chữ dài thì nó là số vô tỉ 

Bình luận (0)
PD
8 tháng 11 2017 lúc 13:14

Giả sử \(\sqrt{8}\)là số hữu tỉ

\(\Rightarrow\sqrt{8}=\frac{a}{b}\left(a,b\in Q;b\ne0;\left(a;b\right)=1\right)\)

\(\Rightarrow8=\frac{a^2}{b^2}\Rightarrow a^2=8b^2\)

Vì \(\frac{a}{b}\)là số hữu tỉ \(\Rightarrow a^2⋮8\Leftrightarrow a⋮8\)

Vì \(a⋮8\Rightarrow a=8k\Rightarrow a^2=64k^2\)

Ta lại có \(8=\frac{a^2}{b^2}\Rightarrow a^2=8b^2\Rightarrow64k^2:8=b^2\Rightarrow8k^2=b^2\)

\(\Rightarrow b^2⋮8\Leftrightarrow b⋮8\)

Vì \(a⋮8;b⋮8\)trái với (a;b) = 1

\(\Rightarrow\sqrt{8}\)là số vô tỉ

\(\RightarrowĐPCM\)

Bình luận (0)
DB
Xem chi tiết
DB
1 tháng 9 2023 lúc 17:10

help me!

cứu tui zới!

Bình luận (0)
HD
1 tháng 9 2023 lúc 17:30

tách ra đk

Bình luận (0)
DB
1 tháng 9 2023 lúc 17:38

tách kiểu gì

Bình luận (0)
NL
Xem chi tiết
NH
23 tháng 7 2021 lúc 19:10

Giả sử \(\sqrt{2}+\sqrt{3}\) là số hữu tỉ ⇒ \(\left(\sqrt{2}+\sqrt{3}\right)^2\) ∈ Q ⇒ 2 + 2.\(\sqrt{2}.\sqrt{3}\) + 3 ∈ Q

Mà 2 và 3 ∈ Q ⇒ 2.\(\sqrt{2}.\sqrt{3}\)  ∈ Q ⇒ \(\sqrt{2}.\sqrt{3}\) ∈ Q ⇒ \(\sqrt{6}\) ∈ Q (Vô lý)

Bình luận (0)
NL
Xem chi tiết
NH
23 tháng 7 2021 lúc 18:45

Giả sử \(\sqrt{6}\) là số hữu tỉ ⇒ \(\sqrt{6}\) = \(\dfrac{m}{n}\) với \(\left\{{}\begin{matrix}m,n\in Z^+\\\left(m,n\right)=1\end{matrix}\right.\) ⇒ 6 = \(\dfrac{m^2}{n^2}\) là số nguyên ⇒ \(m^2\)\(n^2\). Mà \(\left(m,n\right)=1\)\(n^2\) = 1 ⇒ 6 = \(m^2\) (Vô lý)

Vậy \(\sqrt{6}\) là số vô tỉ

Bình luận (0)
TH
23 tháng 7 2021 lúc 18:48

Giả sử \(\sqrt{6}\) là số hữu tỉ thì \(\sqrt{6}=\dfrac{a}{b}\left(a,b\in Z;b\ne0;\left(a,b\right)=1\right)\)

\(\Rightarrow6b^2=a^2\).

Khi đó \(a^2⋮b^2\Rightarrow a⋮b\). Đặt a = bk với k là số nguyên. Khi đó \(6b^2=\left(bk\right)^2\Rightarrow6=k^2\), vô lí vì 6 không là số chính phương.

Vậy ta có đpcm.

Bình luận (0)
MN
23 tháng 7 2021 lúc 19:17

Giả sử √6 là số hữu tỉ. Khi đó tồn tại 2 số m,n sao cho

\(\frac{m}{n}=\sqrt{6}\)  ( \(\frac{m}{n}\) là phân số tối giản)

\(\Rightarrow \frac{m^{2}}{n^{2}}=6\)

\(\Rightarrow m^{2}=6n^{2} \Rightarrow 6n^{2}-2mn=m^{2}-2mn \Leftrightarrow m(m-2n)=n(6n-2m)\)

\(\Leftrightarrow \frac{m}{n}=\frac{6n-2m}{m-2n}\)

Vì √6 >2 nên √6n>2n

\(\Rightarrow m>2n\)

\(\Leftrightarrow 3m>6n\)

\(\Rightarrow m>6n-2m\)

\(\Rightarrow \frac{6m-2n}{m-2n}\)

là phân số rút gọn của \(\dfrac{m}{n}\) (trái giả thiết loại)
⇒⇒ đpcm

Bình luận (0)
HT
Xem chi tiết
JM
Xem chi tiết
TW
27 tháng 10 2016 lúc 22:35

Chứng minh cái này thì đơn giản thôi! 
Mình xin trình bày cách chứng minh mà mình tâm đắc nhất: 
Giả sứ căn 2 là số hữu tỉ=> căn 2 có thể viết dưới dạng m/n.(phân số m/n tối giản hay m,n nguyên tố cùng nhau) 
=>(m/n)^2=2 
=>m^2=2n^2 
=>m^2 chia hết cho 2 
=>m chia hết cho 2 
Đặt m=2k (k thuộc Z) 
=>(2k)^2=2n^2 
=>2k^2=n^2 
=> n^2 chia hết cho 2 
=> n chia hết cho 2. 
Vậy m,n cùng chia hết cho 2 nên chúng không nguyên tố cùng nhau 
=> Điều đã giả sử là sai => căn 2 là số vô tỉ.

Bình luận (0)
DL
2 tháng 7 2015 lúc 10:38

mk nghĩ thế này

a,b) Ta thấy: không có số nào mũ 2 lên được 15 và 2

=>\(\sqrt{15},\sqrt{2}\) là số vô tỉ

c) ta có: \(\sqrt{2}\) là số vô tỉ

mà Số tự nhiên - số vô tỉ luôn luôn là số vô tỉ

=>đpcm

nha bạn

Bình luận (0)
ND
10 tháng 3 2018 lúc 20:44

a, cần CM \(\sqrt{15}\)là số vô tỉ

giả sử \(\sqrt{15}\)là số hữu tỉ 

Đặt \(\sqrt{15}=\frac{a}{b}\left(a,b\in N\right)\)với b\(\ne0\)và phân số\(\frac{a}{b}\) tối giản

Ta có 15=\(\left(\frac{a}{b}^2\right)=\frac{a^2}{b^2}\)

=> a2=15b2=3.5b2

=>a2\(⋮3\)

Mà 3 nguyên tố nên a\(⋮3\)

=>a2\(⋮3^2\)=>  15b2\(⋮3^2\) => \(5b^2⋮3\)

Vì 5 và 3 nguyên tố cùng nhau nên b2\(⋮3\Rightarrow b⋮3\)(3 là số nguyên tố)

Ta có a,b cùng chia hết cho 3 nên \(\frac{a}{b}\)ko tối giản trái với đk của giả sử 

Vậy \(\sqrt{15}\)là số vô tỉ

phần b,c giống The Hell? What

Bình luận (0)
TD
Xem chi tiết
SS
26 tháng 7 2016 lúc 21:50

căn 2 vô tỉ => 1+ căn 2 vô tỉ => căn của  (1+ căn 2) vô tỉ........cứ như vậy là ra

Bình luận (0)
TD
29 tháng 7 2016 lúc 12:08

nếu có dấu 3 chấm sau sô 2 cuối cùng thì làm ntn v ak?

Bình luận (0)
NT
Xem chi tiết
NT
Xem chi tiết
LM
22 tháng 10 2018 lúc 21:12

Giả sử căn 5 là số vô tỉ biểu thị bởi phân số tối giản p/q 
=> p/q = căn 5 =>p^2/ q^2 = 5 =>p^2 = 5q^2 
Như vậy p^2 chia hết cho 5 => p chia hết cho 5 => p= 5k 
Do đó 25k^2 = 5q^2 =>q^2 = 5k^2 => q^2 chia hết cho 5 nên q chia hết cho 5 
Vì p;q chia hết cho 5 nên p/q không tối giản (mâu thuẫn với giả thiết) 
Vậy căn 5 là số vô tỉ

Bình luận (0)
TD
22 tháng 10 2018 lúc 21:13

Nani???

Trường nào học nhanh vậy?

Bình luận (0)
LM
22 tháng 10 2018 lúc 21:13

giả sử √5 là số hữu tỉ 
=> √5 = a/b (a,b ∈ Z ; b ≠ 0) 
không mất tính tổng quát giả sử (a;b) = 1 
=> 5 = a²/b² 
<=> a² = 5b² 
=> a² ⋮ 5 
5 nguyên tố 
=> a ⋮ 5 
=> a² ⋮ 25 
=> 5b² ⋮ 25 
=> b² ⋮ 5 
=> b ⋮ 5 
=> (a;b) ≠ 1 (trái với giả sử) 
=> giả sử sai 
=> √5 là số vô tỉ

Bình luận (0)