Những câu hỏi liên quan
ND
Xem chi tiết
TH
Xem chi tiết
DD
Xem chi tiết
DN
27 tháng 9 2017 lúc 21:27

Gọi 2n-1,2n,2n+1 là 3 số nguyên liên tiếp (n>2)

Ta có

2n-1 là số nguyên tố lớn hơn 3

=>2n-1 không chia hết cho 3

2n không chia hết cho 3

Vì 2n-1,2n,2n+1 là 3 số nguyên liên tiếp

=> 1 trong 3 số phải chia hết cho 3

=> 2n+1 chia hết cho3    (1)

Vì n>2

=> 2n+1 > 3      (2)

Từ (1) và (2) 

=> 2n+1 là hợp số

=> DPCM

Bình luận (0)
DT
16 tháng 2 2017 lúc 17:22

mình ko biet

Bình luận (0)
TH
27 tháng 9 2017 lúc 20:24

minh chưa học

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 8 2018 lúc 9:31

Xột số   A = (2n – 1)2n(2n + 1)

A là tích của 3 số tự nhiên liờn tiệp nên A   ⋮   3  

Mặt khỏc 2n – 1 là số nguyên tố   ( theo giả thiết )

                2n  không chia hết cho 3

Vậy 2n + 1 phải chia hết cho 3 ⇒  2n + 1 là hợp số.

Bình luận (0)
TH
Xem chi tiết
GV
12 tháng 3 2018 lúc 16:31

Bạn xem lời giải chi tiêt ở đường link phía dưới nhé:

Câu hỏi của Bùi Nguyễn Việt Anh - Toán lớp 6 - Học toán với OnlineMath

Bình luận (0)
H24
18 tháng 12 2019 lúc 21:35

ngu cút hỏi nhiều

Bình luận (0)
 Khách vãng lai đã xóa
H24
18 tháng 12 2019 lúc 21:36

thằng điên 

nghĩa là mày đéo làm được

Bình luận (0)
 Khách vãng lai đã xóa
DL
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
PA
17 tháng 1 2016 lúc 15:13

gởi lại câu hỏi cho rõ rõ đê bạn khó phân tick quá

Bình luận (0)
NL
Xem chi tiết
SG
15 tháng 11 2016 lúc 22:15

n3 + n + 2

= n3 - n + 2n + 2

= n.(n2 - 1) + 2.(n + 1)

= n.(n - 1).(n + 1) + 2.(n + 1)

= (n + 1).(n2 - n + 2), có ít nhất 3 ước khác 1

=> n3 + n + 2 là hợp số với mọi n ϵ N* (đpcm)

Bình luận (0)
ND
15 tháng 11 2016 lúc 22:14

Có: n3 + n + 2 = n(n2+1) + 2

- Nếu n lẻ => n2 lẻ => n2 + 1 chẵn => n2 + 1 chia hết cho 2 => n(n2+1) chia hết cho 2

Mà n(n2+1) + 2 > 2 => n(n2+1) + 2 là hợp số => n3 + n + 2 là hợp số (1)

- Nếu n chẵn => n(n2+1) chia hết cho 2 => n(n2+1) + 2 chia hết cho 2

Mà n(n2+1) + 2 > 2 => n(n2+1) + 2 là hợp số => n3 + n + 2 là hợp số (2)

Từ (1) và (2) => n3 + n + 3 là hợp số với mọi n \(\in\) N*

Bình luận (2)