\(\frac{1-2x}{x^2-3x+2}+\frac{x+1}{x-2}\)
rút gọn phương trình sau
Rút gọn biểu thức sau:\(\left(\frac{1}{x}+1-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right).\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x^2+2x}\)
\(\left(\frac{1}{x}+1-\frac{3}{x^3+1}-\frac{3}{x^2-x+1}\right)\cdot\frac{3x^2-3x+3}{\left(x+1\right).\left(x+2\right)}-\frac{2x-2}{x^2+2x}\)
\(=\left(\frac{x+1}{x}-\frac{3}{\left(x+1\right).\left(x^2-x+1\right)}+\frac{3.\left(x+1\right)}{\left(x+1\right).\left(x^2-x+1\right)}\right)\cdot\frac{3.\left(x^2-x+1\right)}{\left(x+1\right).\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}\)
\(=\left[\frac{\left(x+1\right)^2.\left(x^2-x+1\right)-3x+3x^2+3x}{x.\left(x+1\right).\left(x^2-x+1\right)}\right]\cdot\frac{3.\left(x^2-x+1\right)}{\left(x+1\right).\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}\)
\(=\left[\frac{x^4+x^3+x+1+3x^2}{x.\left(x+1\right).\left(x^2-x+1\right)}\right]\cdot\frac{3.\left(x^2-x+1\right)}{\left(x+1\right).\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}\)
\(=\frac{3x^4+3x^3+3x+3+9x^2}{x.\left(x+1\right)^2.\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}=\frac{3x^4+3x^3+3x+3+9x^2}{x.\left(x+1\right)^2.\left(x+2\right)}-\frac{2x^3+2x^2-2x-2}{x.\left(x+1\right)^2.\left(x+2\right)}\)
\(=\frac{3x^4+x^3+7x^2+5x+5}{x.\left(x+1\right)^2.\left(x+2\right)}\)
Rút gọn phương trình
1. A= \(\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{x+3}{x^2-3x}-\frac{x}{x^2-9}\right)\)
2. B= \(\left[\frac{x^2}{x^2-1}-\frac{x^2}{x^2+1}\left(\frac{x}{x+1}+\frac{1}{x^2+x}\right)\right]:\frac{1}{x-1}\)
Giải cụ thể giúp em với ạ, em cảm ơn
1. Rút Gọn A = \(\frac{3m+\sqrt{9m}-3}{m+\sqrt{m}-2}-\frac{\sqrt{m}-2}{\sqrt{m}-1}+\frac{1}{\sqrt{m}+2}-1\)
2. Rút Gọn C = \(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right)\times\frac{3x^2-3x+3}{x^2+3x+2}-\frac{2x-2}{x^2+2x}\)
rút gọn biểu thức
\(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right):\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x^2+2x}\)
\(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right):\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x^2+2x}\left(x\ne-1;x\ne0;x\ne-2\right)\)
\(=\left(\frac{1}{x+1}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3}{x^2-x+1}\right):\frac{3x^3-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\left(\frac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3x+3}{\left(x+1\right)\left(x^2-x+1\right)}\right)\)\(:\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{x^2-x+1-3+3x+3}{\left(x+1\right)\left(x^2-x+1\right)}:\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{x^2+2x+1}{\left(x+1\right)\left(x^2-x+1\right)}:\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+1\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\frac{\left(x+1\right)\left(x+2\right)}{3\left(x^2-x+1\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{\left(x+2\right)^2\left(x+1\right)}{3\left(x^2-x+1\right)^2}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
rút gọn
B\(\left(\frac{x}{x^2-x-6}-\frac{x-1}{3x^2-4x-15}\right):\frac{x^4-2x^2+1}{3x^2+11x+10}.\left(x^2-2x+1\right)\)
Chép đề đúng chưa bạn? 2 phân số đầu có ngoặc không vậy?
Nguyễn Công Tỉnh đúng r bạn, mình sửa lại r
Bạn tự tìm ĐKXĐ nhé!
\(B=\left(\frac{x}{x^2-x-6}-\frac{x-1}{3x^2-4x-15}\right):\frac{x^4-2x^2+1}{3x^2+11x+10}.\left(x^2-2x+1\right)\)
\(=\left(\frac{x}{\left(x-3\right)\left(x+2\right)}-\frac{x-1}{\left(x-3\right)\left(3x+5\right)}\right):\frac{\left(x^2-1\right)^2}{\left(3x+5\right)\left(x+2\right)}.\left(x-1\right)^2\)
\(=\left(\frac{\left(3x+5\right)x}{\left(x-3\right)\left(x+2\right)\left(3x+5\right)}-\frac{\left(x-1\right)\left(x+2\right)}{\left(x-3\right)\left(3x+5\right)\left(x+2\right)}\right).\frac{\left(3x+5\right)\left(x+2\right)}{\left(x-1\right)^2\left(x+1\right)^2}.\left(x-1\right)^2\)
\(=\frac{3x^2+5x-\left(x^2+2x-x-2\right)}{\left(x-3\right)\left(x+2\right)\left(3x+5\right)}.\frac{\left(3x+5\right)\left(x+2\right)}{\left(x+1\right)^2}\)
\(=\frac{3x^2+5x-x^2-2x+x+2}{\left(x-3\right)\left(x+1\right)^2}\)
\(=\frac{2x^2+4x+2}{\left(x-3\right)\left(x+1\right)^2}\)
\(=\frac{2\left(x+1\right)^2}{\left(x-3\right)\left(x+1\right)^2}\)
\(=\frac{2}{x-3}\)
Vậy...
1. Cho biểu thức:
B= ( \(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\)) :\(\frac{1}{\sqrt{x}-1}\)
a) Rút gọn B
b) Tìm Min B
2. Rút gọn biểu thức:
\(\sqrt{\frac{1}{1-2x+x^2}}.\sqrt{\frac{4-4x+4x^2}{81}}\)
3. giải phương trình: 3+\(\sqrt{2x-3}\)= x
giải jùm vs
Rút gọn Pthức:
A= \(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2+x+1}\right)\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x^2+2x}\)
Rút gọn:
M = \(\frac{2x}{x^2-1}+\frac{4x}{x^3-3x^2-x-3}-\frac{2x^2}{3+2x-x^2}\)
Mk sửa đề nha bạn
\(M=\frac{2x}{x^2-1}+\frac{4x}{x^3-3x-x+3}-\frac{2}{3+2x-x^2}\)
\(M=\frac{2x}{x^2-1}+\frac{4x}{\left(x^2-1\right)\left(x-3\right)}-\frac{2}{\left(3-x\right)\left(x+1\right)}\)
\(M=\frac{2x\left(x-3\right)}{\left(x^2-1\right)\left(x-3\right)}+\frac{4x}{\left(x^2-1\right)\left(x-3\right)}+\frac{2\left(x-1\right)}{\left(x^2-1\right)\left(x-3\right)}\)
\(M=\frac{2x^2-6x+4x+2x-2}{\left(x^2-1\right)\left(x-3\right)}=\frac{2x^2-2}{\left(x^2-1\right)\left(x-3\right)}=\frac{2\left(x^2-1\right)}{\left(x^2-1\right)\left(x-3\right)}\)
\(M=\frac{2}{x-3}\)
Bạn tự giải và tìm đkxđ nha
cho biểu thức A= [\(\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}\) -\(\frac{1-2x^2+4x}{x^3-1}\)-\(\frac{1}{x-1}\)] : \(\frac{2x}{x^3+x}\)
a/ rút gọn A
b/tìm x để A sau khi rút gọn có giá trị nhỏ nhất