So sánh phân số: \(\frac{n+1}{n+2}\)và\(\frac{n}{n+3}\)(n thuộc n*)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
So sánh các phân số sau:
a,\(\frac{n}{n+1}\) và \(\frac{n+2}{n+3}\)(n thuộc N)
b, \(\frac{n}{2n+1}và\frac{3n+1}{6n+3}\)(n thuộc N)
Mình mới lớp 5 nên không biết làm bài này.
Xin lỗi nha! Chúc bạn may mắn......mình chính là Đào Minh Tiến!
a) \(\frac{n}{n+1}\)và \(\frac{n+2}{n+3}\)
\(\frac{n}{n+1}=\frac{n\cdot\left(n+3\right)}{\left(n+1\right)\cdot\left(n+3\right)}\)
\(\frac{n+2}{n+3}=\frac{\left(n+2\right)\cdot\left(n+1\right)}{\left(n+3\right)\cdot\left(n+1\right)}\)
So sánh : \(n\cdot\left(n+3\right)\)và \(\left(n+2\right)\cdot\left(n+3\right)\)
\(n\cdot\left(n+3\right)=n^2+3n\)
\(\left(n+2\right)\cdot\left(n+3\right)=n^2+5n+6\)
\(n^2+3n< n^2+5n+6\)
\(\Leftrightarrow\frac{n}{n+1}< \frac{n+2}{n+3}\)
b) \(\frac{n}{2n+1}\)và \(\frac{3n+1}{6n+3}\)
\(\frac{n}{2n+1}=\frac{n\cdot\left(6n+3\right)}{\left(2n+1\right)\cdot\left(6n+3\right)}\)
\(\frac{3n+1}{6n+3}=\frac{\left(3n+1\right)\cdot\left(2n+1\right)}{\left(6n+3\right)\cdot\left(2n+1\right)}\)
So sánh : \(n\cdot\left(6n+3\right)\)và \(\left(3n+1\right)\cdot\left(2n+1\right)\)
\(n\cdot\left(6n+3\right)=6n^2+3n\)
\(\left(3n+1\right)\cdot\left(2n+1\right)=6n^2+5n+1\)
\(6n^2+3n< 6n^2+5n+1\)
\(\Leftrightarrow\frac{n}{2n+1}< \frac{3n+1}{6n+3}\)
so sánh 2 phân số
a) \(\frac{n+1}{n+2}\)và \(\frac{n+3}{n+4}\)
b) \(\frac{n}{n+3}\)và \(\frac{n-1}{n+4}\)
n/n+3=n:(n+3)=n:n+n:3=1+n:3
n+1/n+2=(n+1):(n+2)=(n+1):n+(n+1):(n+2)=1+n+n/2+1/2=3/2+3n/2=3(1+n):2
Vì ta thấy rõ 3(1+n):2 > 1+n :3
Hay n/n+3 < n+1/n+2
Ta xét 2 phân số sau thì có :
\(\frac{n}{n+3}=\frac{n+3-3}{n+3}=\frac{n+3}{n+3}-\frac{3}{n+3}=1-\frac{3}{n+3}\)
\(\frac{n+1}{n+2}=\frac{n+2-1}{n+2}=\frac{n+2}{n+2}-\frac{1}{n+2}=1-\frac{1}{n+2}\)
Để so sánh 2 phân số trên ta so sánh\(\frac{3}{n+3};\frac{1}{n+2}\)
Quy đồng lên ta có :
\(\frac{3}{n+3}=\frac{3\left(n+2\right)}{\left(n+3\right)\left(n+2\right)}=\frac{3n+6}{\left(n+3\right)\left(n+2\right)}\)
\(\frac{1}{n+2}=\frac{n+3}{\left(n+2\right)\left(n+3\right)}\)
Mà 3n+6>n+3
\(\Rightarrow\frac{3}{n+3}>\frac{1}{n+2}\)
\(\Rightarrow1-\frac{3}{n+3}< 1-\frac{1}{n+2}\)
\(\Rightarrow\frac{n}{n+3}< \frac{n+1}{n+2}\)
Mọi người làm vại chi cho phức tạp.
Ta có: \(\frac{n}{n+3}< \frac{n}{n+2}\) (vì \(n+3>n+2\))
Và \(\frac{n}{n+2}< \frac{n+1}{n+2}\)(vì \(n< n+1\))
Theo tính chất bắc cầu suy ra \(\frac{n}{n+3}< \frac{n+1}{n+2}\)
Bài 1:
a,So sánh 2 phân sô \(\frac{n}{n+3}\)và \(\frac{n+1}{n+2}\)với (n thuộc N*)
b,So sánh A=\(\frac{10^{11}-1}{10^{12}-1}\)và B=\(\frac{10^{10}1-1}{10^{11}-1}\)
So sánh hai phân số sau
\(\frac{n}{n+3}\)và \(\frac{n+1}{n+2}\)
Ta số phân số chung gian là \(\frac{n+1}{n+3}\)
Vì \(\frac{n}{n+3}< \frac{n+1}{n+3}< \frac{n+1}{n+2}\)
Nên \(\frac{n}{n+3}< \frac{n+1}{n+2}\)
Ủng hộ nhé !
So sánh các phân số sau ( bằng cách hợp lí)
g) \(\frac{n}{n+3}\)Và \(\frac{n+1}{n+2}\)
h) \(\frac{n+1}{n+2}\)và \(\frac{n+3}{n+4}\)
h) Ta có: \(\frac{n+1}{n+2}=1-\frac{1}{n+2}\)
\(\frac{n+3}{n+4}=\frac{1}{n+4}\)
Vì \(n+2< n+4\)\(\Rightarrow\frac{1}{n+2}>\frac{1}{n+4}\)
\(\Rightarrow1-\frac{1}{n+2}< 1-\frac{1}{n+4}\)\(\Rightarrow\frac{n+1}{n+2}< \frac{n+3}{n+4}\)
SO SÁNH ;
\(\frac{n}{n+1}\)+ \(\frac{n+1}{n+2}\) và \(\frac{2n+1}{n+3}\) (n thuộc N*)
\(\frac{2n+1}{n+3}=\frac{n+n+1}{n+3}=\frac{n}{n+3}+\frac{n+1}{n+3}\)
Do: \(\frac{n}{n+3}< \frac{n}{n+1};\frac{n+1}{n+3}< \frac{n+1}{n+2}\Rightarrow\frac{n}{n+3}+\frac{n+1}{n+3}< \frac{n}{n+1}+\frac{n+1}{n+2}\Rightarrow\frac{2n+1}{n+3}< \frac{n}{n+1}+\frac{n+1}{n+2}\)
So sánh 2 phân số sau:
\(\frac{n}{n+1}\)và \(\frac{n+2}{n+3}\) VỚI n \(\varepsilon\)N; VÀ n lớn hơn hoặc bằng 2
\(\frac{n}{n+1}\)<\(\frac{n+2}{n+3}\) với n>=0
Cho số n lớn hơn hoạc bằng 2 (n thuộc N). So sánh:
A= \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}và1\)
Ta có :
\(\frac{1}{2^2}=\frac{1}{2.2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}=\frac{1}{3.3}<\frac{1}{2.3}\)
....
\(\frac{1}{n^2}=\frac{1}{n.n}<\frac{1}{\left(n-1\right).n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}<1\)nên \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<1\)