M = \(\frac{1}{2.5}+\frac{1}{3.5}+\frac{1}{3.7}+\frac{1}{4.7}+...+\frac{1}{190}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Làm giúp tôi câu này với!
B=1/2.5+1/3.5+1/3.7+1/4.7+...+1/190
Tính :
A=\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...........+\frac{1}{92.95}+\frac{1}{95.98}\)
B=\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+.........+\frac{2}{97.100}\)
ai nhanh mk tik nhé !!!
\(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{95\cdot98}\)
\(A=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{95\cdot98}\right)\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}\cdot\frac{48}{98}\)
\(A=\frac{16}{98}=\frac{8}{49}\)
\(B=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+...+\frac{2}{97\cdot100}\)
\(B=2\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{97\cdot100}\right)\)
\(B=2\left[\frac{1}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{97\cdot100}\right)\right]\)
\(B=2\left[\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\right]\)
\(B=2\left[\frac{1}{3}\left(1-\frac{1}{100}\right)\right]\)
\(B=2\left[\frac{1}{3}\cdot\frac{99}{100}\right]\)
\(B=2\cdot\frac{33}{100}\)
\(B=\frac{33}{50}\)
A = \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)
3A = 3/2.5 + 3/5.8 + 3/8.11 + ... + 3/92.95 + 3/95.98
3A = 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/92 - 1/95 + 1/95 - 1/98
3A = 1/2 - 1/98
3A = 24/49
A = 24/49 : 3
A = 72/49
B = 2/1.4 + 2/4.7 + 2/7.10 + ... + 2/97.100
3/2B = 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/97.100
3/2B = 1/1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/97 - 1/100
3/2B = 1 - 1/100
3/2B = 99/100
B = 99/100 : 3/2
B = 33/50
\(3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}+\frac{3}{95.98}\)
\(\Rightarrow3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\)
\(\Rightarrow3A=\frac{1}{2}-\frac{1}{98}=\frac{24}{49}\)
\(\Rightarrow A=\frac{24}{49}:3=\frac{8}{49}.\)
Vậy \(A=\frac{8}{49}.\)
\(\frac{3}{2}B=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)
\(\Rightarrow\frac{3}{2}B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow\frac{3}{2}B=1-\frac{1}{100}=\frac{99}{100}\)
\(\Rightarrow B=\frac{99}{100}:\frac{3}{2}=\frac{33}{50}.\)
Vậy \(B=\frac{33}{50}.\)
\(B=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{197.200}\)
\(C=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
\(D=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{101.105}\)
\(E=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
chứng tỏ A =\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{3.7}+...+\frac{2}{99.101}\) >1
biểu thức trên = \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}=\frac{100}{101}< 1\)
vậy A<1
\(=1-\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}+\frac{1}{101}\)
\(=\left(\frac{1}{1}+\frac{1}{101}\right)\)
\(=\frac{102}{101}\)
\(\Rightarrow A>1\)
Tính tổng:
A=\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
B=\(\frac{2}{4.7}+\frac{2}{7.10}+\frac{2}{10.13}+...+\frac{2}{100.103}\)
\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{99\cdot101}\)
\(A=\frac{1}{2}\cdot\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{99\cdot101}\right)\)
\(A=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{101}\right)=\frac{1}{2}\cdot\frac{97}{303}=\frac{97}{606}\)
\(B=\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+\frac{2}{10\cdot13}+...+\frac{2}{100\cdot103}\)
\(B=\frac{2}{3}\cdot\left(\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{100\cdot103}\right)\)
\(B=\frac{2}{3}\cdot\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(B=\frac{2}{3}\cdot\left(\frac{1}{4}-\frac{1}{103}\right)=\frac{2}{3}\cdot\frac{99}{412}=\frac{33}{206}\)
tính nhanh : A = \(\frac{2}{2.5}+\frac{2}{5.7}+\frac{2}{7.9}+.......+\frac{2}{37.39}\)
B = \(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+......+\frac{1}{73.76}\)
http://olm.vn/hoi-dap/question/772291.html
sau 3 phút có kết quả tùy bạn
A=\(\frac{37}{78}\)
B=\(\frac{9}{38}\)
Tính nhanh
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56};\)
\(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+.......+\frac{3}{49.51};\)
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+.......+\frac{3}{49.51};\)
\(\frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+......+\frac{1}{2010.2011}\)
\(a,=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-0-0-0-...-0-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}\)
\(=\frac{4}{8}-\frac{1}{8}\)
\(=\frac{3}{8}\)
\(b,=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...-\frac{1}{49}+\frac{1}{49}-\frac{1}{16}\)
\(=1-0-0-0-...-0-\frac{1}{16}\)
\(=1-\frac{1}{16}\)
\(=\frac{15}{16}\)
\(c,\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...-\frac{1}{51}\right)\)
\(=\frac{3}{2}.\left(1-0-0-0-...-\frac{1}{51}\right)\)
\(=\frac{3}{2}.\frac{50}{51}\)
\(=\frac{25}{17}\)
\(d,\)giống câu a tự làm nha mỏi tay quá.
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}.\)
=> \(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)
=> \(A=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
\(B=\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{49.52}=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{49}-\frac{1}{52}\)
=> \(B=\frac{1}{4}-\frac{1}{52}=\frac{24}{104}=\frac{1}{26}\)
1/2*3+1/3*4+1/4*5+...+1/7*8
1/2-1/3+1/3-1/4+1/4-1/5-...-1/8
1/2-1/8=3/8
1/4-1/7+1/7-1/10+1/10-1/13-...-1/52 49/52 bạn nhé
1/4-1/52=3/13
câu này mình gọi nó là S
ta có S:2=2/1*3+2/3*5+...+2/49*51
1/1-1/3+1/3-1/5+...+1/49-1/51
1/1-1/51=50/51
S=50/51*2=100/51
1/100-1/101+1/101-1/102+1/102-1/103+...+1/2010-1/2011
1/100-1/2011
bạn tích đi nhé mình còn phải đi học bạn k cho mình nhé
Tính giá trị biểu thức: A=(1+\(\frac{2}{1.4}\))(1+\(\frac{2}{2.5}\))(1+\(\frac{2}{3.6}\))(1+\(\frac{2}{4.7}\))...(1+\(\frac{2}{2019.2022}\))
+ \(n\left(n+3\right)+2\) \(=n^2+3n+2\)
\(=n^2+2n+n+2=\left(n+1\right)\left(n+2\right)\)
\(A=\frac{1\cdot4+2}{1\cdot4}\cdot\frac{2\cdot5+2}{2\cdot5}\cdot...\cdot\frac{2019\cdot2022+2}{2019\cdot2022}\)
\(=\frac{2\cdot3}{1\cdot4}\cdot\frac{3\cdot4}{2\cdot5}\cdot...\cdot\frac{2020\cdot2021}{2019\cdot2022}\)
\(=\frac{2\cdot3\cdot..\cdot2020}{1\cdot2\cdot...\cdot2019}\cdot\frac{3\cdot4\cdot...\cdot2021}{4\cdot5\cdot...\cdot2022}\)
\(=2020\cdot\frac{3}{2022}=\frac{1010}{337}\)
a) \(x+\frac{2}{5}.x=\frac{-3}{10}\)
b) \(\frac{1}{3.5}+\frac{1}{3.7}+\frac{1}{7.9}+..........+\frac{1}{997+998}\)
Nhớ ghi cách làm nữa nhé ^_^ Ai làm đúng và nhanh nhất mình vote liền cho :D
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+......\frac{1}{997.998}\) đề câu b đây nhé :D Mình ghi nhầm ^_^
a) x + 2/5x = -3/10
x(1+ 2/5) = -3/10
x. 7/5 = -3/10
x = (-3/10) : 7/5 = -3/14
b) Câu b chắc đề sẽ sửa thành như sau:
1/3.5 + 1/3.7 + 1/7.9 + ... + 1/997.999
= 1/2 ( 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - ... - 1/997 + 1/997 + 1/999 )
= 1/2 x 332/999 = 166/999