Tìm x thuộc Z \(-\frac{2}{3}+-\frac{5}{12}< x\le4-\frac{1}{3}:\frac{1}{6}\)
TÌM X \(\in\)Z BIẾT
\(\frac{-2}{3}+\frac{-5}{12}< x\le4-\frac{1}{3}:\frac{1}{6}\)
khó vch mk học lớp 5 ko trả lời dc mà mk là nữ đó nha tại giờ mk ko rảnh nên đếu đổi ảnh hiển thi dc
Đáp là 2 nhá
Họk tốt
1-(\(5\frac{3}{8}+x-7\frac{5}{24}\)) :\(16\frac{2}{3}=0\)
tìm x thuộc N, thỏa mãn \(\frac{2}{3}.\left(\frac{1}{2}+\frac{3}{4}-\frac{1}{3}\right)\le x\le4\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{6}\right)\)
Tìm x hộ mình nhé các bạn
Bài 1: Tìm x,y,z biết:
a: (x+2).(y-3)=5
b: (x+1).(xy-1)=3
c: \(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)
d:\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
e: x+y+z=x.y.z (x,y,z thuộc N)
f: 3x2 + 5y2 = 12 (x,y,z thuộc N)
a) TA có:
(x+2)x(y-3)=5 => x+2 và y-3 thuộc Ư(5)= 1,5,-1,-5
Ta có bảng
x+2 | 1 | 5 | -1 | -5 |
y-3 | 5 | 1 | -5 | -1 |
x | -1 | 3 | -3 | -7 |
y | 8 | 4 | -2 | 2 |
Tìm x biết:
a)\(\frac{3}{4}\)x+\(\frac{1}{5}\)x=\(\frac{1}{6}\) b)x bằng 24% của 24 kg. c)\(\frac{-2}{3}-\frac{5}{2}
tìm cặp số tự nhiên sao cho:
a, \(\frac{4}{x}-\frac{y}{3}=\frac{5}{6}\)( x, y thuộc N )
b, \(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\) ( x , y thuộc Z )
c, \(\frac{x}{6}_{ }-\frac{2}{y}=\frac{1}{30}\) ( x, y thuộc Z )
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
mong các bn đừng làm như vậy nah
Tìm x thuộc z biết :
X = \(\frac{\frac{3}{7}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{5}+\frac{5}{6}}\)
giúp m nha !!! m tick
X=3/7:5/7-3/11:5/11+3/13:5/13
+
1/2:5/4-1/3+1/4:5/6
=3/5-3/5+3/5 + 2/5-1/3+3/10
=3/5 + 11/10
=17/10
Tìm x thuộc Z
a ) \(3\frac{1}{3}:2\frac{2}{5}-1< x< 7\frac{2}{3}.\frac{3}{7}+\frac{5}{7}\)
b) \(\frac{1}{2}-\left(\frac{1}{3}+\frac{1}{4}\right)< x< \frac{1}{48}-\left(\frac{1}{16}-\frac{1}{6}\right)\)
\(3\frac{1}{3}\div2\frac{2}{5}-1< x< 7\frac{2}{3}\cdot\frac{3}{7}+\frac{5}{7}\)
\(\frac{25}{18}-1< x< \frac{23}{7}+\frac{5}{7}\)
\(\frac{7}{18}< x< \frac{28}{7}\)
\(\frac{49}{126}< x< \frac{504}{126}\)
\(\Rightarrow x=\left(\frac{50}{126};\frac{51}{126};\frac{52}{126};......;\frac{503}{126}\right)\)
tìm các số x thuộc Z , sao cho \(\frac{-2}{3}-\frac{5}{12}\)< x < hoặc = ( -2 ) \(^2\)- \(\frac{1}{3}:\frac{1}{6}\)
giải giúp mình vớiii
Có \(\frac{-2}{3}-\frac{5}{12}\)\(< x\le\left(-2\right)^2\)\(-\frac{1}{3}:\frac{1}{6}\)
\(\Rightarrow\frac{-8}{12}-\frac{5}{12}\)\(< x\le\)\(4-\frac{1}{3}.6\)
\(\Rightarrow\frac{-13}{12}< x\le\)\(4-2\)
\(\Rightarrow\frac{-13}{12}< x\le2\)
Vì \(x\in Z\)
\(\Rightarrow x\in\left\{0;1;2\right\}\)
bài 1: cho x, y thuộc Q. cmr:
|x + y| =< |x| + |y|
bài 2: tính:
\(A=\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{7}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
bài 3: cho a + b + c = a^2 + b^2 + c^2 = 1 và x : y : z = a : b : c.
cmr: (x + y + z)^2 = x^2 + y^2 + z^2
1
fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffffEz lắm =)
Bài 1:
Với mọi gt \(x,y\in Q\) ta luôn có:
\(x\le\left|x\right|\) và \(-x\le\left|x\right|\)
\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)
Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Dấu "=" xảy ra khi: \(xy\ge0\)
Bài 3:
Ta có: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\) (vì a + b + c = 1)
Do đó: \(\left(x+y+z\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) (vì a2 + b2 + c2 = 1)
Vậy: (x + y + z)2 = x2 + y2 + z2