Những câu hỏi liên quan
Xem chi tiết
PN
21 tháng 8 2020 lúc 21:11

làm nốt câu này rồi đi ngủ 

\(Q=\frac{|x-2020|+|x-2019|+2019+1}{|x-2019|+|x-2020|+2019}=1+\frac{1}{|x-2020|+|x-2019|+2019}\)

Để Q đạt GTLN thì \(|x-2020|+|x-2019|+2019\)đạt GTNN 

Ta có : \(|x-2020|+|x-2019|+2019=|x-2020|+|2019-x|+2019\)

Sử dụng BĐT /a/ + /b/ >= /a+b/ ta được : 

\(|x-2020|+|2019-x|+2019\ge|x-2020+2019-x|+2019=2020\)

Dấu = xảy ra khi và chỉ khi \(\left(x-2020\right)\left(2019-x\right)\ge0\Leftrightarrow2020\ge x\ge2019\)

Khi đó : \(Q=1+\frac{1}{|x-2020|+|x-2019|+2019}\le1+\frac{1}{2020}=\frac{2021}{2020}\)

Dấu = xảy ra khi và chỉ khi \(2019\le x\le2020\)

Bình luận (0)
 Khách vãng lai đã xóa
MY
Xem chi tiết
.
19 tháng 7 2020 lúc 15:00

Bài 1.

a.Ta có: (x - 1)2  ≥ 0 với mọi x ∈ Z

=> (x - 1)2 + 12 ≥ 12 với mọi x ∈ Z

Dấu "=" xảy ra khi (x - 1)2 = 0

=> x - 1 = 0

=> x = 1

Vậy GTNN của A là 12 tại x = 1.

b. Có: |x + 3| ≥ 0 với mọi x ∈ Z

=> |x + 3| + 2020 ≥ 2020 với mọi x ∈ Z

Dấu "=" xảy ra khi |x + 3| = 0

=> x + 3 = 0

=> x = -3

Vậy GTNN của B là 2020 tại x = -3.

Bài 2.

Có: |3 - x| ≥ 0 với mọi x ∈ Z

=> 20 - |3 - x| ≥ 20 với mọi x ∈ Z

Dấu "=" xảy ra khi |3 - x| = 0

=> 3 - x = 0

=> x = 3

Vậy GTLN của Q là 20 tại x = 3.

Bình luận (0)
 Khách vãng lai đã xóa
LD
19 tháng 7 2020 lúc 15:33

1. A = ( x - 1 )2 + 12

\(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+12\ge12\forall x\)

Dấu = xảy ra <=> x - 1 = 0 => x = 1

Vậy AMin = 12 khi x = 1

B = | x + 3 | + 2020

\(\left|x+3\right|\ge0\forall x\Rightarrow\left|x+3\right|+2020\ge2020\forall x\)

Dấu = xảy ra <=> x + 3 = 0 => x = -3

Vậy BMin = 2020 khi x = -3 

2. ( Bạn LOVE MYSELF sai dấu rồi nhé ... \(\le\)chứ )

Q = 20 - | 3 - x | 

\(\left|3-x\right|\ge0\Rightarrow-\left|3-x\right|\le0\)

=> \(20-\left|3-x\right|\le20\forall x\)

Dấu = xảy ra <=> 3 - x = 0 => x = 3

Vậy QMax = 20 khi x = 3 

Bình luận (0)
 Khách vãng lai đã xóa
H24
19 tháng 7 2020 lúc 15:35

a,  \(A=\left(x-1\right)^2+12\)

Ta có : \(\left(x-1\right)^2\ge0\forall x\in Z\)

\(\Rightarrow\left(x-1\right)^2+12\ge12\)

Dấu ''='' xảy ra <=> x - 1 = 0 <=> x = 1 

Vậy GTNN của A là 12 tại x = 1 

b, \(B=\left|x+3\right|+2020\)

Ta có \(\left|x+3\right|\ge0\forall x\in Z\)

\(\Rightarrow\left|x+3\right|+2020\ge2020\)

Dấu ''='' xảy ra <=> x + 3 = 0 <=> x = -3

Vậy GTNN của B là 2020 tại x = -3 

Bài 2 tương tự 

Bình luận (0)
 Khách vãng lai đã xóa
NV
Xem chi tiết
DD
Xem chi tiết
NT
7 tháng 3 2021 lúc 17:30

a, Để A nhận giá trị lớn nhất thì 19 - x nhận giá trị nguyên dương nhỏ nhất : \(19-x=1\Leftrightarrow x=18\)

b, Để B nhận giá trị nhỏ nhất thì x - 2019 nhận giá trị nguyên âm lớn nhất : \(x-2019=-1\Leftrightarrow x=2018\)

Bình luận (0)
 Khách vãng lai đã xóa
DV
Xem chi tiết
NM
Xem chi tiết
TA
Xem chi tiết
TP
23 tháng 10 2018 lúc 20:00

Vì \(\left|x-2019\right|\ge0\forall x\)

\(\Rightarrow A\ge2018\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)

Vậy Amin = 2018 <=> x = 2019

Bình luận (0)
BD
Xem chi tiết
NP
17 tháng 9 2019 lúc 20:35

Ta có : Q(x) = -(x+1)(x+2019) + 2020

                   = - (x2+2019x+x+2019) + 2020

                   = -x- 2020x - 2019 +2020

                   = -x2 - 2020x + 1

                   = - (x2+2020x + 1020100) + 1020101

                   = - (x+1010)2+1020101

Vì (x+1010)2  \(\ge\) 0 \(\forall x\) nên - (x+1010)\(\le0\forall x\)

=>  - (x+1010)2+1020101 \(\le\)1020101 với mọi x

=> Q(x) \(\le\)1020101 với mọi x

Ta thấy Q(x) = 1020101 khi (x+1010)2 = 0 => x+1010 = 0 => x = -1010

Vậy Q(x) đạt GTLN là 1020101 khi x = -1010

Bình luận (0)
BD
Xem chi tiết