tìm số tự nhiên a, biết rằng \(\frac{3}{4}< \frac{6}{a}< 1\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho một số tự nhiên được chia thành ba số tự nhiên khác theo tỉ lệ \(\frac{2}{5}\text{ };\text{ }\frac{3}{4}\text{ };\text{ }\frac{1}{6}\) . Biết rằng tổng các bình phương của ba số tự nhiên đó là 24309. Tìm số tự nhiên đã cho.
a) Tìm giá trị lớn nhất của biểu thức: \(B=\left|3x-2\right|-\left|3x+7\right|+1\)
b) Cho \(A=\frac{10^{2006}+53}{9}\)Chứng minh rằng A là một số tự nhiên.
c) Cho \(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\)Chứng minh rằng S không phải là số tự nhiên.
Tìm số tự nhiên x biết rằng : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)
\(\Rightarrow2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{2009}\div2\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2007}{4018}\)
\(\Rightarrow\frac{1}{x+1}=\frac{2}{4018}=\frac{1}{2009}\)
\(\Rightarrow x+1=2009\)
\(\Rightarrow x=2008\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
=>\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2007}{4018}\)(nhân cả hai vế với \(\frac{1}{2}\))
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)= \(\frac{2007}{4018}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2007}{4018}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)
\(\frac{1}{x+1}\)=\(\frac{1}{2}-\frac{2007}{4018}\)
\(\frac{1}{x+1}=\frac{1}{2009}\)
x+1=2009
x=2009-1=2008
Vậy x bằng 2008
a)Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 5 dư 4, chia cho 7 dư 5, chia cho 11
dư 6 ?
b) Chứng minh rằng \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}< 1\)
a )
Theo bài ra: (a - 4) chia hết cho 5 => (a - 4) + 20 chia hết cho 5 => a + 16 chia hết cho 5
(a - 5) chia hết cho 7 => (a - 5) + 21 chia hết cho 7 => a + 16 chia hết cho 7
(a - 6) chia hết cho 11 => (a - 6) + 22 chia hết cho 11 => a + 16 chia hết cho 11
=> a + 16 thuộc BC(5; 7; 11)
Mà BCNN(5; 7; 11) = 385
=> a + 16 thuộc B(385) = {0; 385; 770; ...}
=> a thuộc {-16; 369; 754;...}
Vì a là số tự nhiên nhỏ nhất
=> a = 369
b ) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}.\)
Ta có :
\(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)
.....................
\(\frac{1}{2012^2}=\frac{1}{2012.2012}< \frac{1}{2011.2012}\)
Ta có :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2011.2012}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< 1-\frac{1}{2012}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}.< \frac{2011}{2012}\)
Mà \(\frac{2011}{2012}< 1\)
\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< 1\)
\(b)\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}\)
\(< \)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{2010.2011}+\frac{1}{2011.2012}\)
\(< \)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(< \)\(1-\frac{1}{2012}\)\(=\frac{2011}{2012}< 1\)
Vậy Biểu thức \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}\)\(< 1\)
\(a)\)
Theo bài ra: \(\left(a-4\right)⋮5\Rightarrow\left(a-4\right)+20⋮5\Rightarrow a+16⋮5\)
\(\left(a-5\right)⋮7\Rightarrow\left(a-5\right)+21⋮7\Rightarrow a+16⋮7\)
\(\left(a-6\right)⋮11\Rightarrow\left(a-6\right)+22⋮11\Rightarrow a+16⋮11\)
\(\Rightarrow\) \(a+16\in BC\left(5;7;11\right)\)
Mà \(BCNN\left(5;7;11\right)=385\)
\(\Rightarrow\) \(a+16\in B\left(385\right)=\left\{0;385;770;...\right\}\)
\(\Rightarrow\) \(a\in\left\{-16;369;754;...\right\}\)
Vì a là số tự nhiên nhỏ nhất \(\Rightarrow\) \(a=369\)
tìm số tự nhiên x biết rằng
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{2}{x\left(x+1\right)}=\frac{2000}{2002}\)
Ta có: 1/3+1/6+1/10+...+2/x*(x+1)
=2/6+2/12+2/20+...+2/x*(x+1)
=2/2*3+2/3*4+2/4*5+...+2/x*(x+1)
=2*(1/2*3+1/3*4+1/4*5+...+1/x*(x+1))
=2*(1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1)
=2*(1/2-1/x+1)=2000/2002
=>1/2-1/x+1=2000/2002:2
=>1/2-1/x+1=500/1001
=>1/x+1=1/2-500/1001
=>1/x+1=1/2002
=>x+1=2002
=>x=2002-1
=>x=2001 thuộc N
Vậy x=2001
*Mình ko biết ấn dấu phân số với dấu nhân ở đâu, bạn thông cảm nhé!
uk mình cảm ơn bạn rất nhiều
cuc si lau la ong be lac
co nhieu cau tuong tu ban tham tu khao nhe
Tìm các số tự nhiên a và b biết rằng:
\(\frac{1}{a}-\frac{1}{b}=\frac{2}{3}\left(b-a=2\right)\)
Ta có : \(\frac{1}{a}-\frac{1}{b}=\frac{2}{3}\)
\(\Leftrightarrow\frac{b}{ab}-\frac{a}{ab}=\frac{2}{3}\)
\(\Leftrightarrow\frac{b-a}{ab}=\frac{2}{3}\)
<=> \(\frac{2}{ab}=\frac{2}{3}\)
<=> ab = 3
Nên : a,b thuộc Ư(3) = {1;3}
Mà b - a = 2
Vậy a = 1 thì b = 3
\(\frac{1}{a}-\frac{1}{b}=\frac{b}{ab}-\frac{a}{ab}=\frac{b-a}{ab}=\frac{2}{ab}=\frac{2}{3}\Rightarrow ab=3\)
Tới đây giải hiệu tích
a(a+2) = 3
=> a2 + 2a = 3
=> a2 + 2a - 3 = 0
=> a2 - a + 3a - 3 = 0
=> a(a-1) + 3(a-1) = 0
=> (a+3)(a-1) = 0
=> a = -3 hoặc a = 1
Vì a là số tự nhiên nên a = 1
=> b = 3
Vậy (a,b) = (1,3)
Câu 1 a. CHỨNG MINH RẰNG : \(\frac{1}{6}<\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+....+\frac{1}{100^2}<\frac{1}{4}\)
b.TÌM SỐ NGUYÊN A ĐỂ : \(\frac{2A+9}{A+3}+\frac{5A+17}{A+3}-\frac{3A}{A+3}\)LÀ SỐ NGUYÊN.
Câu 2 TÌM N LÀ SỐ TỰ NHIÊN ĐỂ : A=(N+5)(N+6)CHIA HẾT CHO 6N
Câu 3 TÌM ĐA THỨC BẬC HAI SAO CHO: f(x)-f(x)=x.ÁP DỤNG TÍNH TỔNG : S=1+2+3+4+...+n.
đúng là ko có bài nào dễ trong ngày hôm nay
Bạn ghi nhỏ lại nhé. Hơn nũa bạn nên tách riêng từng câu hỏi, làm vầy nhiều lắm
a) Ta co :1/5^2+1/6^2+1/7^2+...+1/100^2<1/4.5+1/5.6+1/6.7+...+1/99.100
Dat A=1/4.5+1/5.6+...+1/99.100. B=1/5^2+1/6^2+...+1/100^2
A=1/4-1/5+1/5-1/6+1/6-1/7+...+1/99-1/100
=1/4-1/100=6/25
Ma1/6<6/25<1/4.Ta lại cóA<6/25 Vậy:1/6<1/5^2+1/6^2+1/7^2+...+1/100^2<1/4
tìm các số tự nhiên x,y biết rằng:
a, \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
b,\(2^{x+1}.3^y=12^x\)
\(2^{x+1}.3^y=12^x\Leftrightarrow2^x.2.3^y=12^x\Leftrightarrow2.3^y=6^x\Leftrightarrow2.3^y=2^x.3^x\)
Xét y=0 \(\Rightarrow2.3^0=6^x\Leftrightarrow2=6^x\) (pt vô nghiệm)
Xét y=1 \(\Rightarrow6=6^x\Leftrightarrow x=1\)
Xét \(y\ge2\Rightarrow x>1\)
\(\Leftrightarrow3^y=2^{x-1}.3^x\) (VT không chia hết cho 2, VP chia hết cho 2 suy ra vô lí)
Tìm số tự nhiên x biết rằng:
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{2001}\)
Đặt: A= 1/3 +1/6+1/10+…+2/x(x+1)
A x 1/2 = 1/2.3 + 1/3.4 + 1/4.5 +…+1/x(x+1)
A x1/2 = 1/2-1/3+1/3-1/4+1/4-1/5+…..+1/x-1/(x+1)
A x 1/2 = 1/2 – 1/(x+1)
A = (1/2 -1/x+1) : 1/2
A = 1 – 2/(x+1)
Như vậy ta có: 1-2/(x+1) = 1999/2001
Hay: 2/(x+1) = 1-1999/2001
2/(x+1) = 2/2001
Vậy x = 2000
Tích tớ nha!! Cáchgiải chính xác 100%
1/3+1/6+1/10+...+1/x(x+1)=1999/2001
1/2.[1/3+1/6+1/10+...+1/x(x+1)].2=1999/2001
[1/6+1/12+1/20+...+1/x(x+1)].2=1999/2001
[1/2.3+1/3.4+1/4.5+...+1/x.(x+1)].2=1999/2001
[1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1].2=1999/2001
(1/2-1/x+1).2=1999/2001
1/2-1/x+1=1999/2001:2=1999/2001.1/2=1999/4002
1/x+1=1/2-1999/4002
1/x+1=2001/4002-1999/4002==2/4002=1/2001
=>x+1=2001
=>x=2001-1=2000
Vậy x=2000