Cho S =1-3+3^2-3^3+...+3^98-3^99. Tính S, từ đó suy rs 3^100 chia cho 4 dư 1
cho S=1+3+3^2+3^3+.......+3^98+3^99
tính S từ đó suy ra 3^100 chia cho 4 dư 1
S=1-3+32-...+398-399 (1)
=>3S=3-32+33+...+399-3100(2)
Từ 1 và 2 =>4S=1-3100
Do S chia hết cho -20 =>4S chia hết cho -20=>4S chia hết cho 4=>1-3100 chia hết cho 4
=>3100 chia 4 dư 1
S=1-3+32-...+398-399 (1)
=>3S=3-32+33+...+399-3100(2)
Từ 1 và 2 =>4S=1-3100
Do S chia hết cho -20 =>4S chia hết cho -20=>4S chia hết cho 4=>1-3100 chia hết cho 4
=>3100 chia 4 dư 1
Cho S=1-3+3^2-3^3+....+3^98-3^99
Tính S, từ đó suy ra 3^100 chia 4 dư 1
Ta có:
\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(\Rightarrow9S=3^2-3^3+3^5-3^7+...+3^{100}-3^{101}\)
\(\Rightarrow9S-S=\left(3^2-3^3+3^5-3^7+...+3^{100}-3^{101}\right)+\left(1-3+3^2-3^3+...+3^{98}-3^{99}\right)\)
\(\Rightarrow8S=3^{101}-1\)
\(\Rightarrow S=\left(3^{101}-1\right):8\)
\(\Rightarrow S=\left(3^{101}-1\right):8⋮4\) ( \(8⋮4\) )
\(\Rightarrow3^{101}-1⋮4\)
\(\Rightarrow3^{101}\) chia 4 dư 1
S=1-3+32-...+398-399 (1)
=>3S=3-32+33+...+399-3100(2)
Từ 1 và 2 =>4S=1-3100
Do S chia hết cho -20 =>4S chia hết cho -20=>4S chia hết cho 4=>1-3100 chia hết cho 4
=>3100 chia 4 dư 1
Cho S = 1 - 3 + 3^2 - 3^3 + .... + 3^98 - 3^99
Tính S , từ đó suy ra 3^100 chia cho 4 dư 1
\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(\Rightarrow3S=3-3^2+3^3-......+3^{99}-3^{100}\)
\(\Rightarrow3S+S=4S=1-3^{100}\)
Cho S=1-3+3^2+......+3^98-3^99
a, Chứng minh rằng S là bội của -20
b, Tính S, từ đó suy ra 3^100 chia cho 4 dư 1
b ) mình đang ngĩ . mình làm ý a nha
S = ( 1 - 3 + 32 - 33 ) + ( 34 - 35 + 36 - 37 ) + .... + ( 396 - 397 + 398 - 399 )
= ( 1 - 3 + 32 - 33 ) + 34 ( 1 - 3 + 32 - 33 ) + .... + 396 ( 1 - 3 + 32 - 33 )
= ( 1 - 3 + 9 - 27 ) + 34 ( 1 - 3 + 9 - 27 ) + ... + 396 ( 1 - 3 + 9 - 27 )
= - 20 + 34 ( - 20 ) + .... + 396 ( - 20 )
= - 20( 1 + 34 + .... + 396 ) chia hết cho - 20 ( đpcm )
cho S=1-3+3^2-3^3+....+3^98-3^99
tính S từ đó suy ra3^100:4 dư 1
lại gặp bài nữa ko có câu hỏi!chán quá
S=1-3+3^2-3^3+.....+3^98-3^99 (1)
3S=3-3^2+3^3+.......+3^99-3^100 (2)
Từ (1) và (2) ta có:
4S=1-3^100
Do đó S chia hết cho -20 => 4S chia hết cho -20 => 4S chia hết cho 4 => 1-3^100 chia hết cho 4
Vậy 3^100 chia 4 dư 1
Cho S= 1 - 3 + 3^2 - 3^3 +...+ 3^98 - 3^99
a) Chứng minh rằng S là bội của ( -20 )
b) Tính S, từ đó suy ra 3 ^100 chia cho 4 dư 1
a)
(1-3+3^2-3^3)+(3^4-3^5+3^6-3^7)+...+(3^96-3^97+3^98-3^99)
=(-20)+[3^4(1-3+3^2-3^3)]+...+[3^96(1-3+3^2-3^3)
=(-20)(3^4+...+3^96)
Vay S la boi cua (-20)
b)?
Cho S 1 3 3 mũ 2 3 mũ 3 .... 3 mũ 98 3 mũ 99 Chứng minh rằng S là bội của 20b Tính S, từ đó suy ra 3mux 100 chia 4 dư 1
Cho S= 1-3+3^2-3^3+.....+3^98-3^99
Chứng minh rằng S là bội của -20
Tính S từ đó suy ra 3^100 chia cho 4 dư 1
Giải chi tiết đầy đủ nha
Cho S = 1-3+3 mũ 2- 3 mũ 3+...+ 3 mũ 98- 3 mũ 99
a) Chứng minh rằng S là bội của -20
b) Tính S, từ đó suy ra 3 mũ 100 chia 4 dư 1
a) S=\(1-3+3^2-3^3+...+3^{98}-3^{99}.\)
=\((1-3+3^2-3^3)+...+3^{96}-3^{97}+3^{98}-3^{99}.\)
=\(\left(1-3+3^2-3^3\right)+..+3^{96}\left(1-3+3^2-3^3\right)\)
=(\(1-3+3^2-3^3\))(1+\(3^4+...+3^{92}+3^{96})\)
=-20(1+\(3^4+...+3^{92}+3^{96})\)là bội của -20
b)S = 1 - 3 + 3^2 - 3^3 +...+ 3^98 - 3^99
=> 3S= 3 - 3^2 + 3^3 - 3^4 +...+ 3^99 - 3^100
=> 3S+S = 1 - 3^100
=>4S=1 - 3^100
=> S = \(\frac{1-3^{100}}{^4}\)
Do S chia hết cho -20 nên S chia hết cho 4 do đó 1-3^100 chia hết cho 4 suy ra 3^100 chia 4 dư 1
Bạn có làm được câu b) không vậy