7x*x+8xy+7y*y=10 tìm giá trị lớn nhất của biểu thức A= x*x+y*y
Cho x,y thỏa mãn 7x2+8xy+7y2=10. Tính giá trị lớn nhất và nhỏ nhất của biểu thức A=x2+y2
Ta có : \(7x^2+8xy+7y^2=10\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+6\left(x^2+y^2\right)=10\)
\(\Rightarrow6\left(x^2+y^2\right)=10-\left(x+y\right)^2\)
\(\Rightarrow x^2+y^2=\frac{10-\left(x+y\right)^2}{6}=\frac{5}{3}-\frac{\left(x+y\right)^2}{6}\)
Vì \(\left(x+y\right)^2\ge0\forall x,y\)\(\Rightarrow\frac{\left(x+y\right)^2}{6}\ge0\)
\(\Rightarrow x^2+y^2\le\frac{5}{3}\)
Dấu \("="\)xảy ra \(\Leftrightarrow\left(x+y\right)^2=0\)
\(\Leftrightarrow x+y=0\)
\(\Leftrightarrow x=-y\)
\(\Leftrightarrow7x^2-8x^2+7x^2=10\)
\(\Leftrightarrow6x^2=10\)
\(\Leftrightarrow x^2=\frac{5}{3}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{5}{3}\end{cases}}\)
hoặc \(\hept{\begin{cases}x=-\frac{5}{3}\\y=\frac{5}{3}\end{cases}}\)
Ta dễ dàng chứng minh được : \(2xy\le x^2+y^2\forall x,y\)
\(\Rightarrow8xy\le4\left(x^2+y^2\right)\)
Ta có :\(7x^2+8xy+7y^2=7\left(x^2+y^2\right)+8xy=10\)
\(\Rightarrow7\left(x^2+y^2\right)=10-8xy\ge10-4\left(x^2+y^2\right)\)
\(\Rightarrow11\left(x^2+y^2\right)\ge10\)
\(\Rightarrow x^2+y^2\ge\frac{10}{11}\)
Dấu \("="\)xảy ra \(\Leftrightarrow x=y\)
\(\Leftrightarrow7x^2+8x^2+7x^2=10\)
\(\Leftrightarrow22x^2=10\)
\(\Leftrightarrow x^2=\frac{5}{11}\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=\sqrt{\frac{5}{11}}\\x=y=-\sqrt{\frac{5}{11}}\end{cases}}\)
Vậy ...
Cho 7x2 + 8xy + 7y2 = 10
Tìm giá trị lớn nhất và nhỏ nhất của x2 + y2 .
cho x, y là 2 số thực thõa mãn: x2 + 2y2 + 2xy + 7x +7y + 10 = 0
tìn giá trị nhỏ nhất và giá trị lớn nhất của biểu thức : A = x + y +1
Cho x,y là hai số thực thỏa mãn (x+y)\(^2\)+7x+7y+y\(^2\)+6=0.Tìm giá trị nhỏ nhất,giá trị lớn nhất của biểu thức M=x+y+1
Ta có : (x+y)2+7x+7y+y2+6=0
( x2 + y2 + \(\frac{49}{4}\)+ 7x + 7y + 2xy ) + y2 - \(\frac{25}{4}\)= 0
( x + y + \(\frac{7}{2}\))2 = \(\frac{25}{4}\)- y2 \(\le\frac{25}{4}\)
\(\Rightarrow\frac{-5}{4}\le x+y+\frac{7}{2}\le\frac{5}{4}\)
\(\Rightarrow\frac{-15}{4}\le x+y+1\le\frac{-5}{4}\)
\(\Rightarrow\)......
lon so roi,
thay -5/4 thành -5/2 ; 5/4 thành 5/2
-15/4 thành -5 ; 5/2 thành 0
chị còn cách nữa
nhưng hình như nó dài hơn ấy
thôi em dùng cách tren cx đc
Cho x>0,y>0,x+y=2012
aTim giá trị lớn nhất của biểu thức B=2x^2+8xy+2y^2/x^2+2xy+y^2
b,Tìm giá trị nhỏ nhất của biểu thức C=(1+2012/x)^2+(1+2012/y)^2
a. giá trị nhỏ nhất của B=3 khi và chỉ khi x=y=1006
1:Tìm các cặp số nguyên dương x;y sao cho:3x^2-7y=5x^2+84
2:Tìm giá trị lớn nhất của biểu thức A=-7x-11/5x+3 (với x€Z)
Cho số thực x, y thỏa mãn hệ thức: x^2+2xy+7x+7y+2y^2+10=0. Hãy tìm giá tri lớn nhất, nhỏ nhất của: S=x+y+1.
Cho x,y,z lớn hơn hoặc bằng 0, 2x+7y=2014 và 3x+5z=3031. Tìm giá trị lớn nhất của biểu thức A= x+y+z
Cộng hai vế ta được: 5(x+y+z)+2y=5045
Để 5(x+y+z) lớn nhất thì 2y nhỏ nhất
Mà 2y lớn hơn hoặc bằng 0 nên 2ymin=0
=> 5(x+y+z)max=5045=> A=x+y+z=5045 <=> y=0 => x=1012 => z=-1
Cho x,y là các số thực không đồng thời bằng 0 . Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(F=\frac{x^2+8xy+7y^2}{x^2+y^2}\) . Tính P=M+m
(Sử dụng miền giá trị hoặc điều kiện tồn tại của nghiệm )
Tội cho bn zạ, hỏi bao câu mà chả có ai trả lời à