Tìm n \(\inℕ\) sao cho \(\left(n-8\right)^2+36\)là số nguyên tố
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm các số tự nhiên \(n\) để \(B=\left(n^2-8\right)^2+36\) là số nguyên tố.
CMR:nếu \(1+2^n+4^n\) là số nguyên tố \(\left(n\inℕ^∗\right)\) thì n=3k \(\left(k\inℕ^∗\right)\)
Tìm số tự nhiên n để \(\left(n^2-8\right)^2+36\)là số nguyên tố
Ta có \(\left(n^2-8\right)^2+36=n^4-16n^2+100=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)
Để \(\left(n^2-8\right)^2+36\)là số nguyên tố thì \(\hept{\begin{cases}n^2-6n+10=1\\n^2+6n+10=1\end{cases}}\)
Do \(n\in N\Rightarrow n^2+6n+10>n^2-6n+10\)
Có \(n^2-6n+10=1\Leftrightarrow n^2-6n+9=0\Leftrightarrow\left(n-3\right)^2=0\)
\(\Rightarrow n=3\)
Vậy với n = 3 thì \(\left(n^2-8\right)^2+36\) là số nguyên tố
\(\left(n^2-8\right)^2+36=n^4-16n^2+100=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)
Để \(\left(n^2-8\right)^2+36\)là số nguyên tố thì
\(n^2+6n+10\)là số nguyên tố và \(n^2-6n+10=1\)
\(\Leftrightarrow n^2-6n+9=0\Leftrightarrow\left(n-3\right)^2=0\Leftrightarrow n=3\)
Tìm n để \(\left(n^2-8\right)^2+36\) là số nguyên tố.
\(Cho\)\(A=\frac{2n+5}{n-1}\)\(\left(n\ne1,n\inℕ^∗\right)\)
Tìm n để A là Số Nguyên Tố.
Ta có
2n+5 chia hết cho n-1
Tách 2n+5=2n-1+6
Vì 2n-1 đã chia hết cho n-1 nên 6 phải chia hết cho n-1
Suy ra n-1 thuộc ước của 6
Mà ước của 6=
là 1;-1;2;-2;3;-3;6;-6.
Rồi sau đo bạn thử n-1 với từng trường hợp
Thấy n nào nguyên tố thì đó là đáp an
Tìm số tự nhiên n để giá trị của biểu thức \(C=\left(n^2-8\right)^2+36\)là một số nguyên tố?
1. Cho n là số tự nhiên \(\left(n\ge1\right)\). Giả sử \(2^n+1\)là 1 số nguyên tố. Cmr : n là một lũy thừa của 2
2. Cmr : tồn tại vô số số nguyên dương a sao cho n^4+a là k số nguyên tố \(\forall n\inℕ^∗\)
3. Cmr : \(\forall\)số nguyên tố p > 7 ta có : \(3^p-2^p-1⋮42\)
Bài 1 : Tìm số nguyên tố biết rằng số đó bằng tổng của 2 số nguyên tố và cũng bằng hiệu của 2 số nguyên tố khác
Bài 2: Tìm số tự nhiên n sao cho \(p=\left(n-2\right)\left(n^2+n-5\right)\)là số nguyên tố
Giup mk nhanh nha các bạn!
Câu hỏi của Davids Villa - Toán lớp 6 - Học toán với OnlineMath
Xem bài 1 tai jđây nhé ! mk ngại viết
Bài 1:
Gọi p là số nguyên tố cần tìm và \(p=a+b=c-d\)với \(a,b,c,d\)là các số nguyên tố ,\(c>d\)
Vì \(p=a+b>2\)nên p là số lẻ
\(\Rightarrow a+b\)và \(c-d\)là các số lẻ
Vì \(a+b\)là số lẻ nên một trong hai số \(a,b\)là số chẵn ,giả sử b chẵn .Vì b là số nguyên tố nên \(b=2\)
Vì \(c-d\)là số lẻ nên một trong hai số \(c,d\)là số chẵn .Vì \(c,d\)là các số nguyên tố \(c>d\)nên d là số chẵn \(\Rightarrow d=2\)
Do vậy :\(p=a+2=c-2\Rightarrow c=a+4\)
Ta cần tìm số nguyên tố a để \(p=a+2\)và \(c=a+4\)cũng là số nguyên tố
Vậy số nguyên tố cần tìm là 5: với \(5=3+2=7-2\)
Bài 2 :
Từ \(p=\left(n-2\right)\left(n^2+n-5\right)\)suy ra \(n-2\) và \(n^2+n-5\)là ước của p
Vì p là số nguyên tố nên hoặc \(n-2=1\)hoặc \(n^2+n-5=1\)
Nếu \(n-2=1\)thì \(n=3\)
Khi đó \(p=1.\left(3^2+3-5\right)=7\)là số nguyên tố (thảo mãn)
Nếu \(n^2+n-5=1\Leftrightarrow n^2+n=6\Leftrightarrow n\left(n+1\right)\)\(=2.3\Rightarrow n=2\)
Khi đó \(p=\left(2-2\right).1=0\)không là số nguyên tố
Vậy \(n=3\)
Chúc bạn học tốt ( -_- )
1. Gpt nghiệm nguyên dương \(\left(x+1\right)\left(y+z\right)-2=xyz\)
2. Gpt nghiệm nguyên \(x+y+z=3\)và \(x^3+y^3+z^3=3\)
3. Tìm \(a,b\inℕ^∗\)sao cho \(a+b=2^{2019}\)và \(ab=2^n+1\)\(\left(b>a>1\right)\)
4. Tìm p nguyên tố sao cho 2p +1 là lập phương một số tự nhiên
5. Cho \(x,y,z\inℕ^∗\)và đôi một nguyên tố cùng nhau và \(-\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\). C/m \(x+y\)là số chính phương.
6. C/m \(13^n\times2+7^n\times5+26\)không là số chính phương.