M=1/4+1/28+1/70+1/130+...+1/9700
1/4+1/28+/1/70+...+1/9700=0,33x/2009
Tính nhanh tổng số
\(\frac{1}{4}\)+ \(\frac{1}{28}\)+ \(\frac{1}{70}\)+ \(\frac{1}{130}\)+ ... + \(\frac{1}{9700}\)
\(A=\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}+...+\frac{1}{9700}\)
\(A=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{97.100}\)
\(A=\frac{3}{3}\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{97.100}\right)\)
\(A=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{97.100}\right)\)
\(A=\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=\frac{1}{3}\left(1-\frac{1}{100}\right)\)
\(A=\frac{1}{3}.\frac{99}{100}=\frac{33}{100}\)
\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}+...+\frac{1}{9700}\)
\(=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}\)
\(=\frac{100}{100}-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+...+\frac{1}{9700}\)
\(=\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{97.100}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+...+\frac{1}{9700}=\frac{0,33x}{2009}\)
\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+...+\frac{1}{9700}=\frac{0,33x}{2009}\)
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}=\frac{0,33x}{2009}\)
\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}=\frac{0,33x}{2009}\)
\(\frac{1}{1}-\frac{1}{100}=\frac{0,33x}{2009}\)
\(\frac{100}{100}-\frac{1}{100}=\frac{0,33x}{2009}\)
\(\frac{99}{100}=\frac{0,33x}{2009}\)
\(\Rightarrow2009.99=100.0,33x\)
\(\Rightarrow2009.99=33x\)
\(\Rightarrow2009.99:33=x\)
\(\Rightarrow2009.3=x\)
\(\Rightarrow6027=x\)
Vậy \(x=6027\)(MK KO CHẮC NÓ ĐÚNG NHÉ )
Tính nhanh:
\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+...+\frac{1}{9700}\)
A = 1/4 + 1/28 + 1/70 +...+ 1/9700
A = 1/1.4 + 1/4.7 + 1/7.10 +...+ 1/97.100
3A = 3/1.4 + 3/4.7 + 3/7.10 +...+ 3/97.100
3A = 1 - 1/100
3A = 99/100
A=99/100:3=33/100
\(=\frac{1}{1.4}+\frac{1}{4.7}+..+\frac{1}{97.100}\)
\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{100}\right)\)
\(=\frac{1}{3}.\frac{99}{100}=\frac{33}{100}\)
= \(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{97.100}\)
= \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)
= \(\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
= \(\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{100}\right)\)
= \(\frac{1}{3}.\frac{99}{100}\)
=\(\frac{33}{100}\)
1 căn phòng có nền nhà là 1 hình chữ nhật có chu vi là 36 m, chiều dài hơn chiều rộng 2 m.
A)tính diện tích của căn phòng đó?
B)người ta dùng gạch hoa hình vuông có cạnh là 40 m để lát nền nhà.Hỏi số viên gạch cần để lát nền nhà là bao nhiêu?
Tính nhanh:A=1/4+1/28+1/70+1/130+...+1/9700
Bạn nào trả lời nhanh nhất và đúng nhất mình tích cho
Tim x:
\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+....+\frac{1}{9700}=\frac{0,33x}{2009}\)
\(\frac{3}{1.4}+\frac{3}{4.7}+..+\frac{3}{97.100}=\frac{0,33x}{2009}\)
\(1-\frac{1}{4}+\frac{1}{4}-...-\frac{1}{100}=\frac{0,33x}{2009}\)
\(1-\frac{1}{100}=\frac{0,33x}{2009}\)
\(\frac{99}{100}=\frac{0,33x}{20009}\Rightarrow2009.99=100.0,33x\)
x=6027
Tính tổng : M = 1/4 + 1/28 + 1/70 + 1/130 + ... + 1/8008
M=1/4+1/4.7+1/7.10+1/10.13+.............+1/88.91
3M=3/4+3/4.7+3/7.10+3/10.13+........+3/88.91
3M= 3/4+1/4-1/7+1/7-1/10+1/10-1/13+......+1/88-1/91
3M=3/4+1/4-1/91=1-1/91=90/91
----->M= 30/91
Tính tổng M = 1/4 + 1/28 + 1/70 +1/130 +..... ( biết tổng M có 30 số hạng )
Tim M biet
M=1/4+1/28+1/70+1/130
M co 30 so hang