Những câu hỏi liên quan
LA
Xem chi tiết
DN
22 tháng 9 2018 lúc 20:33

Ta có:

\(P=\frac{18}{x^2+y^2}+\frac{9}{xy}+\frac{4}{xy}=\frac{18}{x^2+y^2}+\frac{18}{2xy}+\frac{4}{xy}\)

\(=18.\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{4}{xy}\ge18.\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\frac{4}{\frac{\left(x+y\right)^2}{4}}\)

\(=18.4+4.4=72+16=88\)

Dấu bằng xảy ra: \(\Leftrightarrow x=y=\frac{1}{2}\)

Bình luận (0)
BV
Xem chi tiết
YN
5 tháng 1 2021 lúc 23:17
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

Bình luận (0)
 Khách vãng lai đã xóa
OK
Xem chi tiết
LP
Xem chi tiết
DH
3 tháng 6 2018 lúc 10:07

\(M=\frac{2x^2+4xy+2y^2+8xy}{x+y}=\frac{2\left(x^2+2xy+y^2\right)+2\cdot4xy}{x+y}=\frac{2\left(x+y\right)^2+2\cdot1}{x+y}\)

\(=2\left(x+y\right)+\frac{2}{x+y}>=2\sqrt{2\left(x+y\right)\cdot\frac{2}{x+y}}=2\cdot\sqrt{4}=2\cdot2=4\)(bđt cosi)

dấu = xảy ra khi x=y=\(\frac{1}{2}\)

vậy min M là 4 khi \(x=y=\frac{1}{2}\)

Bình luận (0)
CM
Xem chi tiết
NA
Xem chi tiết
NH
9 tháng 11 2023 lúc 14:16

  Em dùng công thức toán học để ghi đề bài sẽ giúp hiểu đúng đề được em nhé. 

Bình luận (0)
LD
Xem chi tiết
TA
17 tháng 10 2020 lúc 21:17

Với \(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)=4\); mà \(4=2.2\)

Có ngay ĐK : \(\left(\sqrt{x}+1\right)\)và \(\left(\sqrt{y}+1\right)\)bằng 2.

\(x=1,y=1\)với TH \(\sqrt{1}=1\)

\(S=\frac{x^4}{y}+\frac{y^4}{x}\). Như phía trên :

\(x=1,y=1\)\(\Rightarrow S=\frac{1^4}{1}+\frac{1^4}{1}\Rightarrow S=1+1=2\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
17 tháng 10 2020 lúc 21:26

Chả ai giải theo cách trẻ trâu như bạn đâu (: 

Bình luận (0)
 Khách vãng lai đã xóa
KN
18 tháng 10 2020 lúc 7:33

Ta có: \(4=\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)=\sqrt{xy}+\sqrt{x}+\sqrt{y}+1\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}+1\Rightarrow\frac{2\left(x+y\right)+2}{2}\ge3\Rightarrow x+y\ge2\)Áp dụng bất đẳng thức Bunyakovsky dạng phân thức, ta được: \(S=\frac{x^4}{y}+\frac{y^4}{x}\ge\frac{\left(x^2+y^2\right)^2}{x+y}\ge\frac{\left(\frac{\left(x+y\right)^2}{2}\right)^2}{x+y}=\frac{\left(x+y\right)^4}{4\left(x+y\right)}=\frac{\left(x+y\right)^3}{4}\ge2\)

Đẳng thức xảy ra khi x = y = 1

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
PQ
30 tháng 5 2020 lúc 15:50

\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)

\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)

\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)

\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)

Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
KN
22 tháng 2 2020 lúc 15:29

\(x+y=1\Rightarrow2\sqrt{xy}\le1\Rightarrow\sqrt{xy}\le\frac{1}{2}\)

\(\Rightarrow xy\le\frac{1}{4}\Rightarrow\frac{1}{xy}\ge4\)

Áp dụng bđt cauchy cho 3 số dương:

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{xy}\ge3\sqrt[3]{\frac{1}{x^2}.\frac{1}{y^2}.\frac{1}{xy}}=3.\frac{1}{xy}\ge3.4=12\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa