Những câu hỏi liên quan
LN
Xem chi tiết
GH
Xem chi tiết
HH
23 tháng 3 2020 lúc 14:02

AYUASGSHXHFSGDB HAGGAHAJF

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
LD
Xem chi tiết
PN
2 tháng 7 2020 lúc 19:37

\(\frac{25x-655}{95}-\frac{5\left(x-12\right)}{209}=\frac{89-3x-\frac{2\left(x-18\right)}{5}}{11}\)

\(< =>\frac{5x-131}{19}=\frac{1631-52x-\frac{38x-684}{5}}{209}\)

\(< =>\left(5x-131\right)209=\left(1631-52x-\frac{38x-684}{5}\right)19\)

\(< =>55x-1441=1631-52x-\frac{38x-684}{5}\)

\(< =>3072-107x=\frac{38x-684}{5}\)

\(< =>\left(3072-107x\right)5=38x-684\)

\(< =>15360-535x-38x-684=0\)

\(< =>14676=573x< =>x=\frac{14676}{573}=\frac{4892}{191}\)

nghệm xấu thế 

Bình luận (0)
 Khách vãng lai đã xóa
PN
2 tháng 7 2020 lúc 19:46

\(\frac{8\left(x+22\right)}{45}-\frac{7x+149+\frac{6\left(x+12\right)}{5}}{9}=\frac{x+35+\frac{2\left(x+50\right)}{9}}{5}\)

\(< =>\frac{8x+176}{45}-\frac{41x+817}{45}=\frac{11x+415}{45}\)

\(< =>993-33x-11x-415=0\)

\(< =>578=44x< =>x=\frac{289}{22}\)

Bình luận (0)
 Khách vãng lai đã xóa
TL
2 tháng 7 2020 lúc 20:02

Bài 1: 

b) Phương trình đã cho tương đương với phương trình:

\(\frac{8\left(x+22\right)-55\left(7x+149\right)-6\left(x+12\right)}{45}=\frac{9\left(x+35\right)+2\left(x+50\right)}{45}\)

\(\Leftrightarrow44x=-1056\)

\(\Leftrightarrow x=-24\)

Vậy x=-24 là nghiệm của phương trình

c) Phương trình đã cho tương đương với phương trình:

\(\frac{3x+6}{70}-\frac{x+4}{24}=\frac{32x+19}{60}+\frac{2}{3}\)

\(\Leftrightarrow12\left(3x+6\right)-35\left(x+4\right)=14\left(32x+19\right)+560\)

\(\Leftrightarrow-447x=894\)

\(\Leftrightarrow x=-2\)

Vậy x=-2 là nghiệm của phương trình

Bình luận (0)
 Khách vãng lai đã xóa
HA
Xem chi tiết
DD
8 tháng 5 2017 lúc 7:26

Cái bài đầu giải BPT bn ghi cái dj ak ,mik cx k hỉu nữa

V mik giải bài 2 nghen, sửa lại đề bài đầu rồi mik giải cho

\(3x-3=|2x+1|\)

Điều kiện: \(3x-3\ge0\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=3x-3\\2x+1=-3x+3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1-3\\2x+3x=-1+3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-x=-3\\5x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\left(n\right)\\x=\frac{2}{5}\left(l\right)\end{cases}}}\)

Vậy S={3}

Cài đề câu b ,bn xem lại nhé!

Bình luận (0)
NT
8 tháng 5 2017 lúc 17:06

\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)

\(\Leftrightarrow\frac{2x-3}{35}+\frac{5x\left(x-2\right)}{35}-\frac{5x^2}{35}+\frac{7\left(2x-3\right)}{35}>0\)

\(\Leftrightarrow2x-3+5x\left(x-2\right)-5x^2+7\left(2x-3\right)>0\)

\(\Leftrightarrow2x-3+5x^2-10x-5x^2+14x-21>0\)

\(\Leftrightarrow6x-24>0\)

\(\Leftrightarrow x>4\)

VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG TRÌNH LÀ :  S = {  \(x\text{\x}>4\)}

\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)

\(\Leftrightarrow\frac{6\left(6x+1\right)}{108}+\frac{9\left(x+3\right)}{108}\le\frac{18\left(5x+3\right)}{108}+\frac{12\left(12-5x\right)}{108}\)

\(\Leftrightarrow36x+6+9x+27\le90x+54+144-60x\)

\(\Leftrightarrow36x+6+9x+27-90x-54-144+60x\le0\)

\(\Leftrightarrow15x-165\le0\)

\(\Leftrightarrow x\le11\)

VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG trình ..........

tk mk nka !!! chúc bạn học tốt !!!

Bình luận (0)
SS
Xem chi tiết
TA
24 tháng 7 2017 lúc 22:08

bạn tham khảo thêm cách này nha Shonogeki No Soma

ĐK: \(\hept{\begin{cases}x\ne0\\x\ne1\\x\ne-1\end{cases}}\)

Đặt  \(a=\left(x-1\right)^3;b=x^3;c=\left(x+1\right)^3\)

pt đã cho đc viết lại thành

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}a=-b\\b=-c\\c=-a\end{cases}}\)  (kí hiệu [..] mới đúng nha)

- TH1: a = -b hay  \(\left(x-1\right)^3=-x^3\)  \(\Leftrightarrow2x^3-3x^2+3x-1=0\)  \(\Leftrightarrow x=\frac{1}{2}\)  (Nhận)

- TH2: b = -c hay  \(\left(x+1\right)^3=-x^3\)  \(\Leftrightarrow2x^3+3x^2+3x+1=0\)  \(\Leftrightarrow x=-\frac{1}{2}\)  (Nhận)

- TH3: c = -a hay  \(\left(x+1\right)^3=-\left(x-1\right)^3\)  \(\Leftrightarrow x=0\)  (Loại)

KL:  \(S=\left\{\frac{1}{2};-\frac{1}{2}\right\}\)

Bình luận (0)
AN
24 tháng 7 2017 lúc 15:31

\(\frac{1}{\left(x-1\right)^3}+\frac{1}{\left(x+1\right)^3}+\frac{1}{x^3}=\frac{1}{3x\left(x^2+2\right)}\)

\(\Leftrightarrow4x^8+15x^6+12x^4+8x^2-6=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\left(x^2+3\right)\left(x^2-x+1\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{1}{2}\end{cases}}\)

Bình luận (0)
TA
24 tháng 7 2017 lúc 15:33

còn cách khác ko alibaba nguyễn?

Bình luận (0)
HN
Xem chi tiết
NN
13 tháng 4 2020 lúc 16:16

a) \(ĐKXĐ:x\ne\pm3\)

\(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}\)\(\Leftrightarrow\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow\frac{x+3+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)

\(\Rightarrow x+3+x\left(x-3\right)=2\)\(\Leftrightarrow x+3+x^2-3x=2\)

\(\Leftrightarrow x+3+x^2-3x-2=0\)\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)\(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)( thoả mãn ĐKXĐ )

Vậy tập nghiệm của phương trình là \(S=\left\{1\right\}\)

b) \(x^2-1=\left|x+1\right|\)(1)

TH1: Nếu \(x+1< 0\)\(\Leftrightarrow x< -1\)

\(\Rightarrow\left|x+1\right|=-\left(x+1\right)\)

(1) \(\Leftrightarrow x^2-1=-\left(x+1\right)\)\(\Leftrightarrow x^2-1+x+1=0\)

\(\Leftrightarrow x^2+x=0\)\(\Leftrightarrow x\left(x+1\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

So sánh với ĐK ta thây không có giá trị nào của x thoả mãn

TH2: Nếu \(x+1\ge0\)\(\Leftrightarrow x\ge-1\)

\(\Rightarrow\left|x+1\right|=x+1\)

(1) \(\Leftrightarrow x^2-1=x+1\)\(\Leftrightarrow x^2-1-x-1=0\)

\(\Leftrightarrow x^2-x-2=0\)\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

So sánh với ĐKXĐ ta thấy cả 2 giá trị của x đều thoả mãn

Vậy tập nghiệm của phương trình là \(S=\left\{-1;2\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
TL
13 tháng 4 2020 lúc 16:06

\(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}\left(x\ne\pm3\right)\)

\(\Leftrightarrow\frac{1}{x-3}+\frac{x}{x+3}-\frac{2}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{x^2-3x}{\left(x-3\right)\left(x+3\right)}-\frac{2}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{x+3+x^2-3x-2}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{x^2-2x+1}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

<=> x-1=0

<=> x=1 (tmđk)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
AN
1 tháng 3 2018 lúc 13:42

\(\frac{1}{\left(x-1\right)^3}+\frac{1}{\left(x+1\right)^3}+\frac{1}{x^3}-\frac{1}{3x\left(x^2+2\right)}=0\)

\(\Leftrightarrow\frac{x\left(2x^2+6\right)}{\left(x^2-1\right)^3}+\frac{2x^2+6}{3x^3\left(x^2+2\right)}=0\)

\(\Leftrightarrow\frac{x}{\left(x^2-1\right)^3}+\frac{1}{3x^3\left(x^2+2\right)}=0\)

\(\Leftrightarrow4x^6+3x^4+3x^2-1=0\)

Đặt \(x^2=a\)

\(\Rightarrow4a^3+3a^2+3a-1=0\)

\(\Leftrightarrow\left(4a-1\right)\left(a^2+a+1\right)=0\)

\(\Leftrightarrow4a=1\)

\(\Rightarrow4x^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)

Bình luận (0)
PL
27 tháng 2 2018 lúc 20:05

Bài lớp mấy mà khó vậy!Mình ko hiểu!

Bình luận (0)
TD
Xem chi tiết
KV
Xem chi tiết