Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
 .
Xem chi tiết
ND
Xem chi tiết
HL
Xem chi tiết
NL
Xem chi tiết
TC
Xem chi tiết
XO
11 tháng 6 2021 lúc 15:18

a) Đặt A = 20184n + 20194n + 20204n

= (20184)n + (20194)n + (20204)n

= (....6)n + (....1)n + (....0)n

= (...6) + (...1) + (...0) = (....7) 

=> A không là số chính phương

b) Đặt 1995 + n = a2 (1) 

2014 + n = b2 (2)

a;b \(\inℤ\)

=> (2004 + n) - (1995 + n) = b2 - a2

=> b2 - a2 = 9

=> b2 - ab + ab - a2 = 9

=> b(b - a) + a(b - a) = 9

=> (b + a)(b - a) = 9

Lập bảng xét các trường hợp

b - a19-1-93-3
b + a91-9-1-33
a-444-4-33
b55-5-500

Từ a;b tìm được thay vào (1)(2) ta được 

n = -1979 ; n = -2014 ; 

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
H24
Xem chi tiết
CH
Xem chi tiết
PN
15 tháng 10 2017 lúc 22:55

Tham khảo nhé:

https://diendantoanhoc.net/topic/147769-t%C3%ACm-n-in-n-%C4%91%E1%BB%83-n4n31-l%C3%A0-s%E1%BB%91-ch%C3%ADnh-ph%C6%B0%C6%A1ng/

Bình luận (0)
CH
15 tháng 10 2017 lúc 22:57

mk xem không hiểu bạn ơi

Bình luận (0)
ZZ
25 tháng 5 2019 lúc 10:37

Giả sử  \(n^4+n^3+1\) là số chính phương.

Do  \(n\) là số nguyên dương nên  \(n^4+n^3+1>n^4=\left(n^2\right)^2\)

Nên  \(n^4+n^3+1\) có dạng: \(\left(n^2+k\right)^2=n^4+2kn^2+k^2\) với  \(k\in Z^+\)

\(\Rightarrow n^4+n^3+1=n^4+2kn^2+k^2\)

\(\Rightarrow n^3-2kn^2=k^2-1\)

\(\Rightarrow n^2\left(n-2k\right)=k^2-1\ge0\left(1\right)\)

Mà \(k^2-1⋮n^2\Rightarrow\orbr{\begin{cases}k^2=1\\n^2\le k^2-1\end{cases}}\)

Nếu \(k^2=1\Rightarrow k=1\Rightarrow n^2\left(n-2\right)=0\Rightarrow n=2\)(Thử lại thấy thỏa mãn)

Nếu \(n^2\le k^2-1\Rightarrow k^2>k^2-1\ge n^2\Rightarrow k>n\Rightarrow n-2k< 0\Rightarrow n^2\left(n-2k\right)< 0\) trái với (1).

Vậy \(n=2\)  

Bình luận (0)
ND
Xem chi tiết