Những câu hỏi liên quan
NK
Xem chi tiết
NA
4 tháng 12 2014 lúc 16:16

A=2^1+2^2+2^3+2^4+...+2^2010 

=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)

=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)

=2.3+2^3.3+...+2^2010.3

=(2+2^3+2^2010).3

=> A chia het cho 3

​​​​ 

 

Bình luận (0)
NB
10 tháng 12 2014 lúc 10:48

Mà câu c bạn đánh chia hết thành chết hết rồi kìa

Bình luận (0)
H24
4 tháng 2 2017 lúc 12:57

em chịu!!!!!!!!!!!

Bình luận (0)
H24
Xem chi tiết
DT
22 tháng 12 2015 lúc 9:24

Minh lam cau A) thoi duoc hong

Bình luận (0)
NL
Xem chi tiết
PH
12 tháng 3 2020 lúc 17:31

+) C=5+52+53+54+....+52010

<=> C=(5+52)+(53+54)+.....+(52009+52010)

<=> C=5(1+5)+53(1+5)+....+52009(1+5)

<=> C=5 x 6 +53 x 6+....+52009 x 6

<=> C=6(5+53+....+52009)

=> C chia hết cho 6 (đpcm)

+) C=5+52+53+54+....+52010

<=> C=(5+52+53)+(54+55+56)+....+(52008+52009+52010)

<=> C=5(1+5+25)+54(1+5+25)+....+52008(1+5+25)

<=> C=5 x 31+54x31 +....+52008 x 31

<=> C=31(5+54+....+52008)

=> C chia hết cho 31 (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
PH
12 tháng 3 2020 lúc 17:34

+) D=7+72+73+74+....+72010

<=> D=(7+72)+(73+74)+....+(72009+72010)

<=> D=7(1+7)+73(1+7)+....+72009(1+7)

<=> D=7 x 8 +73 x 8 +....+72009 x 8

<=> D=8(7+73+....+72009)

+) D=7+72+73+74+....+72010

<=> D=(7+72+73)+(74+75+76)+....+(72008+72009+72010)

<=> D=7(1+7+49)+74(1+7+49)+....+72008(1+7+49)

<=> D=7 x 57 +74 x 57+....+72008 x 57

<=> D=57(7+74+...+72008)

=> D chia hết cho 57 (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
NS
2 tháng 12 2015 lúc 19:10

 ( 2+ 2) + ( 2+ 2) + ... + ( 22009 + 22010 )

= 2. ( 1 + 2 ) + 2. ( 1 + 2 ) + ... + 22009 . ( 1 + 2 )

= 3 . ( 2 + 2+ ... + 22009 ) chia hết cho 3. => ĐPCM

 

 

Bình luận (0)
H24
Xem chi tiết
LD
9 tháng 9 2017 lúc 23:49

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

Bình luận (0)
NN
10 tháng 12 2017 lúc 21:36

Thanks bạn

Bình luận (0)
DL
13 tháng 2 2020 lúc 23:03

Giải: 

A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010

A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_

A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3

A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3

A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)

A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7

A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.

Các câu còn lại làm tương tự như câu a nha bạn!

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
DH
16 tháng 12 2020 lúc 11:43

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
11 tháng 12 2017 lúc 8:28

Câu b, chuyển 3^2010 thành 2^2010 nhé!

Bình luận (0)
TA
Xem chi tiết
NL
25 tháng 7 2017 lúc 8:31

1. Ta có: A = 2^1+ 2^2 +2^3+2^4+....2^10

A= ( 2^1 + 2^2) + ( 2^3+2^4) +....( 2^9+ 2^10)

A= 3.( 2^1+2^3+2^5+...+2^1005)

Do 3 \(⋮\)3 => A\(⋮\)3

Ta có: A =.....

A= Ghép 3 số lại

A= 7. (2^1+ 2^4+...+2^670)

Do 7 \(⋮\)7 => A \(⋮\)7

2;3;4 đều ghép 2 hoặc 3 số như tke và phần trog ngoặc cx y hệt như tke, ko thay đổi

Duyệt nhanh....

Bình luận (0)