Biểu thức B=\(\frac{1}{\sqrt{x}+5}\) đạt giá trị lớn nhất là....
1. \(P=\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{3}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{3}+3}{3-\sqrt{3}}\)
a) Rút gọn P
b) Tính giá trị nhỏ nhất của P
c) Tính giá trị của P với \(x=14-6\sqrt{5}\)
2. Tìm giá trị nhỏ nhất của biểu thức \(P=x^2-x\sqrt{3}+1\)
3. Tìm số dương x để biểu thức \(Y=\frac{x}{\left(x+2011\right)^2}\)đạt giá trị lớn nhất
4. Cho \(Q=\frac{1}{x-\sqrt{x}+2}\)xác định x để Q đạt giá trị lớn nhất
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
Làm như thế nào ra \(\frac{x}{4x.2011}\)vậy bạn?
BĐT \(\left(x+y\right)^2\ge4xy\)nhe bạn
Biểu thức B= \(\frac{1}{\sqrt{x+2016}}\)đạt giá trị lớn nhất, khi x bằng...
Biểu thức A đạt giá trị lớn nhất với A=\(\frac{13}{17-x}\)
Biểu thức B đạt giá trị lớn nhất với B=\(\frac{3}{x-7}\)
Biểu thức C đạt giá trị lớn nhất với C=\(\frac{40-3x}{13-x}\)
Biểu thức D đạt giá trị lớn nhất với D=\(\frac{20-x}{x-12}\)
Cám ơn bạn Phạm Minh Hải giúp tôi giải bài toán này
AE bơi vô giúp mk với :
tìm giá trị x để biểu thức \(\frac{1}{x^2-2\sqrt{2}x+5}\) đạt giá trị lớn nhất
Tèn ten ! Tìm mãi mới thấy 1 bài hay !!
Bài làm : ( hay thì hay nhưng mk chỉ làm ngắn gọn thui !Ngại)
Ta có :
\(x^2-2\sqrt{2}x+5+\left(x-\sqrt{2}\right)^2+3\ge3\)
\(\Rightarrow\frac{1}{x^2-2\sqrt{2}x+5}\le\frac{1}{3}\)
Do đó , khi \(x=\sqrt{2}\) thì biểu thức trên có giá trị lớn nhất là \(\frac{1}{3}\)
Ta có: \(\frac{1}{x^2-2\sqrt{2}x+5}=\frac{1}{x^2-2x\sqrt{2}+2+3}=\frac{1}{\left(x-\sqrt{2}\right)^2+3}\)
Lại có: \(\left(x-\sqrt{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)^2+3\ge3\forall x\)
\(\Leftrightarrow\frac{1}{\left(x-\sqrt{2}\right)^2+3}=\frac{1}{3}\)
Dấu " = " xảy ra thì biểu thức có \(Min=\frac{1}{3}\)
Khi đó: \(\left(x-\sqrt{2}\right)^2=0\)
\(\Leftrightarrow x-\sqrt{2}=0\)
\(\Leftrightarrow x=\sqrt{2}\)
Vậy ............
Ớ lộn \(Max\)mà viết là \(Min\) bn sửa giùm mình <3
Biểu thức đạt giá trị lớn nhất khi
\(B=\frac{1}{\sqrt{x}+5}\) đạt GTLN thì \(\sqrt{x}+5\) nhỏ nhất
\(\Leftrightarrow\sqrt{x}\) nhỏ nhất
\(\Rightarrow\sqrt{x}=0\)
\(\Rightarrow x=0\)
Biểu thức \(B=\frac{1}{\sqrt{x+5}}\) đạt giá trị lớn nhất khi \(x=\)
Cho biểu thức M=\(\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Rút gọn biểu thức M
b) Tìm giá trị của x để biểu thức M đạt giá trị nhỏ nhất
Biểu thức \(\frac{1}{\sqrt{x}+5}\)đạt giá trị lớn nhất khi x bằng
bày mình vs nhé ^_^
Để biểu thức trên có giá trị lớn nhất thì: \(\frac{1}{\sqrt{x}+5}=1\Rightarrow\sqrt{x}=-4\) ( vô lí ). Vậy \(\sqrt{x}+5\ge5\)
\(\Rightarrow\) Để biểu thức trên có giá trị lớn nhất thì: \(\frac{1}{\sqrt{x}+5}=\frac{1}{5}\Rightarrow\sqrt{x}+5=5\Rightarrow\sqrt{x}=0\Leftrightarrow x=0\)
Tick mik nha
Cho hai biểu thức: A=\(\frac{\sqrt{x}}{x+1}\)và B=\(\frac{x-2}{x+2\sqrt{x}}\)\(-\frac{1}{\sqrt{x}}\)\(+\frac{1}{\sqrt{x}+2}\)với x>0
a) Tính giá trị biểu thức A khi x = 9
b) Rút gọn biểu thức B
c) Tìm các giá trị của x để B= \(\sqrt{x}-2\)
d) Tìm giá trị nguyên của x để B có giá trị nguyên
e)Tìm giá trị của x để P=2AB+\(\frac{4}{x+1}\)đạt giá trị lớn nhất
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111