\(\frac{1}{5\: }\: +\frac{1}{5^2}\: +\: ...\: +\: \frac{1}{5^{100}}\: tinh\: \)
Tinh
\(V=4.5^{100}\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+....+\frac{1}{5^{100}}\right)+1\)
Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(5A-A=\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\right)\)
\(4A=1-\frac{1}{5^{100}}\)
\(A=\frac{1-\frac{1}{5^{100}}}{4}\)
\(A=\frac{1}{4}-\frac{1}{5^{100}}:4\)
\(A=\frac{1}{4}-\frac{1}{5^{100}.4}\)
=> \(V=4.5^{100}.\left(\frac{1}{4}-\frac{1}{5^{100}.4}\right)+1\)
\(V=\left(4.5^{100}.\frac{1}{4}-4.5^{100}.\frac{1}{5^{100}.4}\right)+1\)
\(V=\left(5^{100}-1\right)+1\)
\(V=5^{100}\)
tinh
\(\frac{1}{5}+\frac{1}{5^2}+.....\frac{1}{5^{100}}\)
cau 1
tinh A=1 +\(\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+....+\frac{100}{2^{100}}\)
Tinh cac tong sau
\(H=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)
\(I=\frac{4}{5}+\frac{4}{5^2}+\frac{4}{5^3}+...+\frac{4}{5^{200}}\)
Tinh A = \(1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
\(2.A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\)
=> 2.A - A = \(\left(2+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{100}{2^{99}}\right)-\left(1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\right)\)
=> A = \(\left(2+\frac{3}{2^2}-1-\frac{100}{2^{100}}\right)+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+\left(\frac{5}{2^4}-\frac{4}{2^4}\right)+...+\left(\frac{100}{2^{99}}-\frac{99}{2^{99}}\right)\)
A = \(1+\frac{3}{2^2}-\frac{100}{2^{100}}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}=\left(1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)+\frac{2}{2^2}-\frac{100}{2^{100}}\)
Tính B = \(1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
2.B = \(2+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\) => 2.B - B = \(1+\frac{1}{2}-\frac{1}{2^{99}}\)=> B = \(\frac{3}{2}-\frac{1}{2^{99}}\)
Vậy A = \(\frac{3}{2}-\frac{1}{2^{99}}+\frac{2}{2^2}-\frac{100}{2^{100}}=2-\frac{1}{2^{99}}-\frac{100}{2^{100}}=2=\frac{2^{101}-102}{2^{100}}\)
Tinh a) \(\frac{\left(1+2+3+....+100\right).\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..............+\frac{1}{100}}\)
1) Tinh gia tri cua bieu thuc:
A=\(\frac{\left(1+2+...+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\right)\left(2,4.42-21.4,8\right)}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
B=\(\frac{4^6.9^5+6^9.120}{-8^4.3^{12}+6^{11}}\)
\(A=\frac{\left(1+2+...+100\right)\left(\frac{1}{2}^2-...-\frac{1}{5}\right)\left(2,4.42-21.4,8\right)}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)
=> \(A=\frac{\left(1+2+...+100\right)\left(\frac{1}{2}-...-\frac{1}{5}\right).0}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)= 0
Chứng minh rằng:
a. \(\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+\frac{4}{3^5}+...+\frac{99}{3^{100}}+\frac{100}{3^{101}}< \frac{1}{4}\)
b.\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
c.\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{1}{16}\)
d. \(\frac{1}{5^2}-\frac{2}{5^3}+\frac{3}{5^4}-\frac{4}{5^5}+...+\frac{99}{5^{100}}-\frac{100}{5^{101}}< \frac{1}{36}\)
Tinh
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{100}\right)+x=2+\frac{1}{5}\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)......\left(1-\frac{1}{100}\right)+x=2+\frac{1}{5}\)
\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{99}{100}+x=\frac{11}{5}\)
\(\frac{1}{100}+x=\frac{11}{5}\)
\(x=\frac{11}{5}-\frac{1}{100}=\frac{219}{100}\)
X=219/100 đó nha!
chúc may mắn!!!