Những câu hỏi liên quan
TN
Xem chi tiết
PQ
26 tháng 7 2019 lúc 11:40

\(\frac{x-2017}{2018}-\frac{x-2018}{2017}=\frac{2017}{x-2018}-\frac{2018}{x-2017}\)

\(\Leftrightarrow\)\(\frac{2017\left(x-2017\right)-2018\left(x-2018\right)}{2017.2018}=\frac{2017\left(x-2017\right)-2018\left(x-2018\right)}{\left(x-2017\right)\left(x-2018\right)}\)

Do \(2017\left(x-2017\right)-2018\left(x-2018\right)\ne0\) nên \(\left(x-2017\right)\left(x-2018\right)=2017.2018\)

\(\Leftrightarrow\)\(x^2-4035x+2017.2018=2017.2018\)

\(\Leftrightarrow\)\(x\left(x-4035\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\left(l\right)\\x=4035\left(n\right)\end{cases}}\)

Vậy x = 4035 

Bình luận (0)
ND
Xem chi tiết
RC
Xem chi tiết
CG
12 tháng 5 2018 lúc 18:26

\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)

\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)

\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{20}{41}\div\frac{1}{2}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{40}{41}\)

\(\Leftrightarrow\frac{1}{x+2}=1-\frac{40}{41}\)

\(\Leftrightarrow\frac{1}{x+2}=\frac{1}{41}\)

\(\Leftrightarrow x+2=41\)

\(\Leftrightarrow x=41-2\)

\(\Leftrightarrow x=39\)

Bình luận (0)
NL
5 tháng 4 2020 lúc 9:05

???????????????????????????????????????????????????????

Bình luận (0)
 Khách vãng lai đã xóa
NC
5 tháng 4 2020 lúc 9:12

99% LÀ 39

CÒN LAI LÀ ĐÁP ÁN KHÁC

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
H24
Xem chi tiết
H24
7 tháng 8 2018 lúc 8:55

help me

Bình luận (0)
PQ
7 tháng 8 2018 lúc 14:24

\(a)\) Ta có : 

\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)

\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)

\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)

\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)

Lại có : 

\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)

\(\Rightarrow\)\(x=2019\)

Vậy \(x=2019\)

Chúc bạn học tốt ~ 

Bình luận (0)
PQ
7 tháng 8 2018 lúc 14:35

\(b)\) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)

\(\Leftrightarrow\)\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)

\(\Leftrightarrow\)\(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)

\(\Leftrightarrow\)\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)

\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)

\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)

\(\Leftrightarrow\)\(1-\frac{2}{x+1}=\frac{2017}{2019}\)

\(\Leftrightarrow\)\(\frac{2}{x+1}=1-\frac{2017}{2019}\)

\(\Leftrightarrow\)\(\frac{2}{x+1}=\frac{2}{2019}\)

\(\Leftrightarrow\)\(x+1=2019\)

\(\Leftrightarrow\)\(x=2019-1\)

\(\Leftrightarrow\)\(x=2018\)

Vậy \(x=2018\)

Chúc bạn học tốt ~ 

Bình luận (0)
IL
Xem chi tiết
H24
Xem chi tiết
H24
30 tháng 10 2019 lúc 21:49

bạn cần nói rõ đề hơn nhé

Bình luận (0)
 Khách vãng lai đã xóa
H24
30 tháng 10 2019 lúc 22:17

3 dấu giá trị tuyệt đối là sao

Bình luận (0)
 Khách vãng lai đã xóa
CT
Xem chi tiết
CD
19 tháng 4 2019 lúc 21:14

đặt x-2016=a

y-2017=b

z-2018=c

ta có\(\frac{1}{\sqrt{a}}-\frac{1}{a}+\frac{1}{\sqrt{b}}-\frac{1}{b}+\frac{1}{\sqrt{c}}-\frac{1}{c}=\frac{3}{4}\)

=>\(\left(\frac{1}{\sqrt{a}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{b}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{c}}-\frac{1}{2}\right)^2=0\)

=>\(a=b=c=4\)

còn lại tự lm nốt

Bình luận (0)
CT
19 tháng 4 2019 lúc 21:16

oke cao van duc

thank nhiều nha

hok tốt

Bình luận (0)
TL
1 tháng 5 2020 lúc 6:50

Đặt \(\hept{\begin{cases}a=\sqrt{x-2009}\\b=\sqrt{y-2010}\\c=\sqrt{z-2011}\end{cases}}\)(với a,b,c>0). Khi đó phương trình đã cho trở thành

\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)

\(\Leftrightarrow\left(\frac{1}{4}-\frac{1}{a}+\frac{1}{a^2}\right)+\left(\frac{1}{4}-\frac{1}{b}+\frac{1}{b^2}\right)+\left(\frac{1}{4}-\frac{1}{c}+\frac{1}{c^2}\right)=0\)

\(\Leftrightarrow\left(\frac{1}{2}-\frac{1}{a}\right)^2+\left(\frac{1}{2}-\frac{1}{b}\right)^2+\left(\frac{1}{2}-\frac{1}{c}\right)^2\)

\(\Leftrightarrow a=b=c=2\)\(\Rightarrow\hept{\begin{cases}x=2013\\y=2014\\z=2015\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
VH
Xem chi tiết