Những câu hỏi liên quan
Xem chi tiết
HS
4 tháng 4 2020 lúc 15:51

Ta có : \(B=\frac{27-2x}{12-x}=\frac{2\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)

Xét \(x>12\)thì B < 0                             (1)

Xét x < 12 thì mẫu 12 - x là số nguyên dương . Phân số B có tử và mẫu đều dương,tử không đổi nên

B lớn nhất \(\Leftrightarrow\)mẫu 12 - x nhỏ nhất \(\Leftrightarrow\)12 - x = 1 \(\Leftrightarrow\)x = 11       

Thay x = 11 ta có : \(2+\frac{3}{12-11}=2+\frac{3}{1}=5\)

Khi đó B = 5        (2)

So sánh 1 và 2 , ta thấy GTLN của B bằng 5 khi và chỉ khi x = 11

Bình luận (0)
 Khách vãng lai đã xóa
AA
Xem chi tiết
NN
Xem chi tiết
NN
2 tháng 8 2016 lúc 9:51

trả lời giúp mk với 

Bình luận (0)
MM
7 tháng 8 2016 lúc 20:58

chịu , hổng bt lun ak

Bình luận (0)
H24
7 tháng 8 2016 lúc 22:10

A lớn nhất khi 2(x-1)^2 + 3 nhỏ nhất Vậy A lớn nhất là 1/3 khi x = 1

Bình luận (0)
NT
Xem chi tiết
H24
Xem chi tiết
NT
27 tháng 6 2015 lúc 9:45

\(A=\frac{1}{7-x}\)

A lớn nhất khi  7-x nhỏ nhất và 7-x >0

vậy 7-x = 1 <=> x = 6

\(B=\frac{27-2x}{12-x}=\frac{24-2x}{12-x}+\frac{3}{12-x}=2+\frac{3}{12-x}\)

 B lớn nhất khi 3/ (12-x) lớn nhất  => 12-x phải là số nguyên( để x nguyên) VÀ nhỏ nhất với giá trị dương.

Giá trị dương nhỏ nhất là 1 => 12 -x = 1 => x = 11

vậy x = 11 thì B lớn nhất

Bình luận (0)
DX
Xem chi tiết
DH
24 tháng 11 2021 lúc 13:01

1) Xét rằng x > 7 <=> A < 0

Lại xét x < 7 thì mẫu là một số nguyên dương. P/s A có tử và mẫu đều là số dương, mà tử lại bất biến

A(max) <=> mẫu 7 - x nhỏ nhất <=> 7 - x = 1 => x = 7 - 1 = 6 <=> A = 1

Từ những điều trên thì A sẽ có GTLN khi và chỉ khi x = 6

Bình luận (0)
PD
Xem chi tiết
HK
Xem chi tiết
NH
8 tháng 4 2023 lúc 18:52

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

Bình luận (0)
CT
Xem chi tiết
Xem chi tiết