Cho x,y khác 0và x+y=1 chứng minh x/(y^3-1)+y/(x^3-1)-2(xy-2)/(x^2×y^2+3)=0
1,Chứng minh rằng:8351634+8241142chia het cho 26
2, cmr : x5+y5>=x4y+xy4 với x,y khác 0và x+y>=0
cau 1 de sai roi ban minh se chung minh
8351 mod 26=5
5n mod 26 chu chu ki 4 (5-25-21-1) ma 8241142 chia het cho 26
suy ra no khong chia het cho 26 xem lai di
chứng minh:
a) ( x - 1 )(x^2 - x + 1) = x^3 -1
b) (x^3 + x^2y + xy^2 + y^3)(x - y) = x^3 - y^3
a) (x-1)(x2-x+1)=x3-x2+x-x2+x-1=x3-2x2+2x-1 (Đề sai nên không ra được kết quả)
b) (x3+x2y+xy2+y3)(x-y) = x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4 = x4-y4 (Chắc đề này cũng sai nốt...)
chứng minh:
a) ( x - 1 )(x^2 - x + 1) = x^3 -1
b) (x^3 + x^2y + xy^2 + y^3)(x - y) = x^3 - y^3
a) ( x - 1 ) ( x2 - x + 1 ) = x3 -1
<=> x3 - 1 = x3 - 1 (hằng đẳng thức số 7 nhá bạn rút gọn đi)
bạn ơi đề sai rồi !!!
phải là = x4 - y 4 cơ .....
cho x+y=1 và xy khác 0
C/M: \(\frac{y}{x^3-1}-\frac{x}{y^3-1}=\frac{2\left(x-y\right)}{x^2y^2+3}\)
câu này thi bn quy đòng bình thường mà tính thôi
khai triển ra
rồi tạo ra x= y để thay vào bạn cứ biến đổi
như vậy thì sẽ ra thôi
\(\frac{y}{x^3-1}-\frac{x}{y^3-1}=\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}\)
\(=-\frac{1}{x^2+x+1}+\frac{1}{y^2+y+1}=\frac{x^2+x-y^2-y}{x^2y^2+x^2y+xy^2+xy+x^2+y^2+1+x+y}\)
\(=\frac{\left(x-y\right)\left(x+y+1\right)}{x^2y^2+2xy+x^2+y^2+2}=\frac{2\left(x-y\right)}{x^2y^2+3}\)
Cho x,y,z là các số khác 0 và x2=yz,y2=xz,z2=xy. Chứng minh x=y=z
Cho xy khac 0 va x+y=1
Chung minh rang : x/y^3-1+y/x^3-1-2(xy-2)/(xy)^2+3=0
Câu 1 ;CMR với mọi x,y : \(x^2+xy+y^2+1>0\)
Câu 2 : Chứng minh \(x^3+y^3-z^3+3xyz⋮x+y-z\) .Tìm thương của phép chia .
Bài 1:
Ta có:\(x^2+xy+y^2+1\)
\(=x^2+\dfrac{1}{2}xy+\dfrac{1}{2}xy+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2+1\)
\(=\left(x^2+\dfrac{1}{2}xy\right)+\left(\dfrac{1}{2}xy+\dfrac{1}{4}y^2\right)+\dfrac{3}{4}y^2+1\)
\(=x.\left(x+\dfrac{1}{2}y\right)+\dfrac{1}{2}y.\left(x+\dfrac{1}{2}y\right)+\dfrac{3}{4}y^2+1\)
\(=\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x+\dfrac{1}{2}y\right)^2\ge0;\dfrac{3}{4}y^2\ge0\)
\(\Rightarrow\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge0\Rightarrow\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\ge1>0\)
Hay \(x^2+xy+y^2+1>0\) (đpcm)
Chúc bạn học tốt!!!
cho x,y khác 0. chứng minh x^2/y^2+y^2/x^2 lớn hơn hoặc bằng x/y +y/x
Ta có: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge\frac{x}{y}+\frac{y}{x}\)
\(\Leftrightarrow\frac{x^4+y^4}{x^2y^2}\ge\frac{x^2+y^2}{xy}\Leftrightarrow\frac{x^4+y^4}{x^2y^2}\ge\frac{x^3y+xy^3}{x^2y^2}\)
\(\Leftrightarrow x^4+y^4\ge x^3y+xy^3\Leftrightarrow x^4+y^4-x^3y-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)(đúng)
Các phép biến đổi là tương đương suy ra đpcm
Dấu "=" xảy ra khi x=y
Cho A = \(\dfrac{\left(x-y\right)^2+xy}{\left(x+y\right)^2-xy}.\left[1:\dfrac{x^5+y^5+x^3y^2+x^2y^3}{\left(x^3-y^3\right)\left(x^3+y^3+x^2y+xy^2\right)}\right]\)
B = x - y
Chứng minh đẳng thức A = B
Tính giá trị của A, B tại x = 0; y = 0 và giải thích vì sao A ≠ B
\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)
\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)
\(x=0;y=0\Leftrightarrow B=0\)
Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)
Vậy \(A\ne B\)