Những câu hỏi liên quan
HM
Xem chi tiết
HT
2 tháng 7 2021 lúc 19:50

2. 

Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)

 Ta có : x (x+1) (x+2 ) (x+3 ) +1 

 =(  x2 + 3x ) (x2 + 2x + x +2 )  +1 

= (  x2 + 3x ) (x2 +3x + 2 ) +1  (*)

Đặt t = x2 + 3x  thì  (* ) =  t ( t+2 ) + 1=  t2 + 2t +1  =  (t+1) = (x2 + 3x + 1 )2

=>  x (x+1) (x+2 ) (x+3 ) +1  là số chính phương 

hay tích 4 số tự nhiên liên tiếp  cộng  1 là số chính phương 

Bình luận (0)
 Khách vãng lai đã xóa
LD
23 tháng 11 2024 lúc 21:45

Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x

∈ N)

 

 Ta có : x (x+1) (x+2 ) (x+3 ) +1 

 

 =( x2 + 3x ) (x2 + 2x + x +2 ) +1 

 

= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)

 

Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2

 

=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương 

 

hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương 

Bình luận (0)
PL
Xem chi tiết
H24
30 tháng 11 2019 lúc 15:38

2. Gọi 4 số TN liên tiếp lần lượt là :a ; a + 1 ; a + 2 ; a + 3 ; a + 4 ( a thuộc N)

Ta có : a + a + 1 + a + 2 + a + 3 + a + 4 = a + a + a + a + 1 + 2 +3 + 4 = 4a + 6

Vì 4a chia hết cho 2 ; 6 chia hết cho 2 nên 4a + 6 chia hết cho 2

Vì 4a chia hết cho 4 ; 6 không chia hết cho 4 nên 4a + 6 không chia hết cho 4

Do đó tổng của 4 số TN liên tiếp chia hết cho 2 nhưng không chia hết cho 22

Do đó tổng của 4 số TN liên tiếp không là số chính Phương

Học tốt 🐱

Bình luận (0)
 Khách vãng lai đã xóa
TM
Xem chi tiết
HN
17 tháng 6 2016 lúc 19:27

Goi 4 số tự nhiên liên tiếp lần lượt là x, x+1, x+2, x+3 (\(x\in N\))

Ta sẽ chứng minh \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)là một số chính phương.

Ta có : \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]+1\)

\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1=\left(x^2+3x\right)\left[\left(x^2+3x\right)+2\right]+1\)

\(=\left(x^2+3x\right)^2+2.\left(x^2+3x\right)+1=\left(x^2+3x+1\right)^2\)là một số chính phương.

Vậy ta có điều phải chứng minh.

Bình luận (0)
NH
Xem chi tiết
CB
Xem chi tiết
CB
9 tháng 2 2017 lúc 20:46

Gọi 4 số tự nhiên, liên tiêp đó là n, n + 1, n+ 2, n + 3 (n ∈ N). Ta có

n(n + 1)(n + 2)(n + 3) + 1 = n.(n + 3(n + 1)(n + 2) + 1

= (n2 + 3n)( n2 + 3n + 2) + 1 (*)

Đặt n2 + 3n = t (t ∈ N) thì (*) = t( t + 2 ) + 1 = t2 + 2t + 1 = (t + 1)2 = (n2 + 3n + 1)2

Vì n ∈ N nên n2 + 3n + 1 ∈ N Vậy n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.

Bình luận (0)
CB
9 tháng 2 2017 lúc 20:46

Gọi 4 số tự nhiên, liên tiêp đó là n, n + 1, n+ 2, n + 3 (n ∈ N). Ta có

n(n + 1)(n + 2)(n + 3) + 1 = n.(n + 3(n + 1)(n + 2) + 1

= (n2 + 3n)( n2 + 3n + 2) + 1 (*)

Đặt n2 + 3n = t (t ∈ N) thì (*) = t( t + 2 ) + 1 = t2 + 2t + 1 = (t + 1)2 = (n2 + 3n + 1)2

Vì n ∈ N nên n2 + 3n + 1 ∈ N Vậy n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.

Bình luận (0)
CB
9 tháng 2 2017 lúc 20:46

Gọi 4 số tự nhiên, liên tiêp đó là n, n + 1, n+ 2, n + 3 (n ∈ N). Ta có

n(n + 1)(n + 2)(n + 3) + 1 = n.(n + 3(n + 1)(n + 2) + 1

= (n2 + 3n)( n2 + 3n + 2) + 1 (*)

Đặt n2 + 3n = t (t ∈ N) thì (*) = t( t + 2 ) + 1 = t2 + 2t + 1 = (t + 1)2 = (n2 + 3n + 1)2

Vì n ∈ N nên n2 + 3n + 1 ∈ N Vậy n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.

Bình luận (0)
BT
Xem chi tiết
H24
14 tháng 7 2017 lúc 21:06

Bùi Phương Trang

Gọi 4 số tự nhiên, liên tiêp đó là n, n + 1, n+ 2, n + 3  (n € N). Theo đề bài ta có:

n(n + 1)(n + 2)(n + 3) + 1 = n.(n + 3(n + 1)(n + 2) + 1

= (n2 + 3n)( n2 + 3n + 2) + 1   (*)

Đặt  n2 + 3n = t  (t € N) thì (*) = t( t + 2 ) + 1 = t2 + 2t + 1 = ( t + 1 )2

= (n2 + 3n + 1)2

Vì  n € N nên suy ra: (n2 + 3n + 1) € N.

=> Vậy n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.

Bình luận (0)
HH
2 tháng 4 2020 lúc 15:06

vì đề bài hỏi là có hay ko

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
4 tháng 1 2016 lúc 19:56

Gọi 5 số tự nhiên liên tiếp là n- 2; n - 1; n ; n + 1; n + 2

Ta có : (n-2)2 + (n-1)2 + n2 + (n+1)2 + (n +2)2 =  (n2 - 4n + 4) + (n2 - 2n + 1) + n2 + (n2 + 2n + 1)+( n2 + 4n + 4) = 5n2 + 10 = 5.(n+ 2)

 Ta có 5. (n2 + 2) chia hết cho 5 nhưng không chia hết cho 25 

vì n2 + 2 không chia hết cho 5 (do n2 có thể  tận cùng là 0;1;4;5;6;9 )

=> 5.(n+ 2) không là số chính phương => đpcm

Bình luận (0)
H24
4 tháng 1 2016 lúc 19:57

 ta có: (n-1)n(n+1)(n+2) +1=[n(n+1)][(n-1)(n+2)] +1
=(n^2 +n)(n^2 +n -2) +1 (*) 
Đặt n^2 +n =a 
(*)<=> a(a-2) +1= a^2 -2a+1= (a-1)^2 là số chính phương 
=>điều phải chứng minh 

Bình luận (0)
TN
4 tháng 1 2016 lúc 20:05

gọi 4 số đó là a,a+1,a+2,a+3

theo bài ra ta có

a(a+1).(a+2).(a+3)+1

nhóm a với a+1,a+2 với a+3 ta được: (a2+3a)(a2+3a+2)+1

đặt a2+3a+1=y => a2+3a=y-1; a2+3a+2=y2-1+1=y(đpcm)

ta có (.(y+1)(y-1)+1=y2

Bình luận (0)
DA
Xem chi tiết
NK
14 tháng 12 2015 lúc 21:44

Gọi 4 số tự nhiên liên tiếp là n-1;n;n+1;n+2(n thuộc N*)

Theo đề ra ta có

\(\left(n-1\right)n\left(n+1\right)\left(n+2\right)+1=\left(n\left(n+1\right)\right).\left(\left(n-1\right)\left(n+2\right)\right)+1\)

\(=\left(n^2+n\right)\left(n^2+n-2\right)+1\)

Đặt \(n^2+n-1=a\)

=>(a-1)(a+1)+1=a^2-1+1=a^2 là số chính phương

Tick nha

Bình luận (0)
NH
Xem chi tiết
CN
20 tháng 3 2016 lúc 16:47

Gọi 4 số tự nhiên, liên tiêp đó là n, n + 1, n+ 2, n + 3 (n ∈ N). Ta có

n(n + 1)(n + 2)(n + 3) + 1 = n.(n + 3(n + 1)(n + 2) + 1

= (n2 + 3n)( n2 + 3n + 2) + 1 (*)

Đặt n2 + 3n = t (t ∈ N) thì (*) = t( t + 2 ) + 1 = t2 + 2t + 1 = (t + 1)2 = (n2 + 3n + 1)2

Vì n ∈ N nên n2 + 3n + 1 ∈ N Vậy n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.:))

Bình luận (0)