Những câu hỏi liên quan
FT
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết
CD
9 tháng 12 2019 lúc 18:36

Thay \(2016=xyz\)vào biểu thức ta được

\(A=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

   \(=\frac{x^2yz}{xy\left(1+xz+z\right)}+\frac{y}{y\left(z+1+xz\right)}+\frac{z}{xz+z+1}\)

   \(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}=\frac{xz+z+1}{xz+z+1}=1\)

Vậy \(A=1\)

Bình luận (0)
 Khách vãng lai đã xóa
NN
12 tháng 11 2020 lúc 21:13

Vì \(xyz=2016\)

\(\Rightarrow A=\frac{2016x}{xy+2016x+2016}+\frac{y}{yz+y+2016}+\frac{z}{xz+z+1}\)

\(=\frac{xyz.x}{xy+xyz.x+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{y\left(z+1+xz\right)}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy\left(1+xz+z\right)}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)

\(=\frac{xz+1+z}{xz+z+1}=1\)

Bình luận (0)
 Khách vãng lai đã xóa
DL
Xem chi tiết
NP
15 tháng 7 2018 lúc 11:00

Vì \(\left(x-\frac{1}{5}\right)^2\ge0\).Dấu "=" xảy ra khi \(x=\frac{1}{5}\)

\(\Rightarrow A=\left(x-\frac{1}{5}\right)^2+\frac{11}{15}\ge\frac{11}{15}\)

Nên GTNN của A là \(\frac{11}{15}\) xảy ra khi \(x=\frac{1}{5}\)

Bình luận (0)
DL
15 tháng 7 2018 lúc 11:02

Cảm ơn các bạn nhiều nha

Bình luận (0)
HT
Xem chi tiết
H24
18 tháng 4 2018 lúc 20:15

do \(\left(x-2\right)^2\ge o\forall x\)

\(\Rightarrow\left(x-2\right)^2+5\ge5\)

\(\Rightarrow\frac{6}{\left(x-2\right)^2+5}\ge\frac{6}{5}\)

Suy ra \(\frac{6}{\left(x-2\right)^2+5}\)đạt giá trị nhỏ nhất là \(\frac{6}{5}\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy

Bình luận (0)
HT
18 tháng 4 2018 lúc 20:20

cảm ơn bạn nhiu

Bình luận (0)
KP
Xem chi tiết
BM
Xem chi tiết
PN
23 tháng 8 2021 lúc 16:23

Ta có : \(|x-1|\ge0=>-\frac{2}{5}|x-1|\le0\)

\(=>-\frac{2}{5}|x-1|+1\le1\)

Dấu "=" xảy ra \(< =>x=1\)

Vậy Max A = 1 khi x = 1

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
6 tháng 5 2020 lúc 15:48

\(A=\left[\frac{6x^2}{x^3-1}-\frac{2x-2}{x^2+x+1}-\frac{1}{x-1}\right]:\frac{x^2+9}{\left(x-1\right)\left(9-4x\right)}\)

\(=\left[\frac{6x^2}{x^3-1}-\frac{\left(2x-2\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)

\(=\frac{6x^2-\left(2x^2-4x+2\right)-x^2-x-1}{\left(x^2+x+1\right)\left(x-1\right)}\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)

\(=\frac{5x^2-2x^2+4x-2-x-1}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)

\(=\frac{3x^2+3x-3}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)

Biểu thức A bạn viết đúng chưa?

Bình luận (0)
 Khách vãng lai đã xóa
AN
Xem chi tiết
H24
6 tháng 10 2019 lúc 10:25

Ta có : \(\left|x-2011\right|\ge0;\left|x-200\right|\ge0\)

            =>|x-2011|+|x-200|\(\ge0\)

            =>A\(\ge0\)

Dấu bằng xảy ra <=> x-2011=0<=>x=2011

                                  x-200=0<=>x=200

Vậy Amin=0<=>x\(\in\left\{2011;200\right\}\)

Bình luận (0)