Giúp mình nha, mình cần gấp
Tìm giá trị nhỏ nhất của A =\(\frac{2016x+3780}{x^2+1}\)
Tìm giá trị nhỏ nhất của biểu thức: A=\(\frac{2016x+3780}{x^2+1}\)
Tìm giá trị nhỏ nhất của biểu thức A=\(\frac{2016x+3780}{x^2+1}\)
cho x.y.z=2016
tính giá trị của biểu thức A =\(\frac{2016x}{xv+2016x+2016}+\frac{y}{yz+y+2016}+\frac{z}{xz+z+1}\)
giúp mình với, mình đang cần gấp
Thay \(2016=xyz\)vào biểu thức ta được
\(A=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy\left(1+xz+z\right)}+\frac{y}{y\left(z+1+xz\right)}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}=\frac{xz+z+1}{xz+z+1}=1\)
Vậy \(A=1\)
Vì \(xyz=2016\)
\(\Rightarrow A=\frac{2016x}{xy+2016x+2016}+\frac{y}{yz+y+2016}+\frac{z}{xz+z+1}\)
\(=\frac{xyz.x}{xy+xyz.x+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{y\left(z+1+xz\right)}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy\left(1+xz+z\right)}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)
\(=\frac{xz+1+z}{xz+z+1}=1\)
Tìm giá trị nhỏ nhất của biểu thức : A=(x-1/5)^2+11/15.mình cần gấp các bạn cố gắng giúp mình nha
Vì \(\left(x-\frac{1}{5}\right)^2\ge0\).Dấu "=" xảy ra khi \(x=\frac{1}{5}\)
\(\Rightarrow A=\left(x-\frac{1}{5}\right)^2+\frac{11}{15}\ge\frac{11}{15}\)
Nên GTNN của A là \(\frac{11}{15}\) xảy ra khi \(x=\frac{1}{5}\)
tìm giá trị nhỏ nhất của
\(\frac{6}{\left(x-2\right)^2+5}\)
mình cần gấp mai kiểm tra 1 tiết rồi!!!
giúp mình nha
do \(\left(x-2\right)^2\ge o\forall x\)
\(\Rightarrow\left(x-2\right)^2+5\ge5\)
\(\Rightarrow\frac{6}{\left(x-2\right)^2+5}\ge\frac{6}{5}\)
Suy ra \(\frac{6}{\left(x-2\right)^2+5}\)đạt giá trị nhỏ nhất là \(\frac{6}{5}\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy
giúp mình với
cho biểu thức A=\(\frac{x^2-2x+2011}{x^2}\)với x>0.Tìm giá trị của x để A đạt giá trị nhỏ nhất.Tìm giá trị nhỏ nhất đó
mình đg cần gấp ạ!!
Ai giúp mình câu này với, ai giúp mình thì mình cảm ơn trước nha.
Tìm giá trị lớn nhất,nhỏ nhất của biểu thức.
A=\(\frac{-2}{5}\cdot|x-1|+1\)
Ta có : \(|x-1|\ge0=>-\frac{2}{5}|x-1|\le0\)
\(=>-\frac{2}{5}|x-1|+1\le1\)
Dấu "=" xảy ra \(< =>x=1\)
Vậy Max A = 1 khi x = 1
A=[(6x^2+6/x^3-1)-(2x-2/x^2+x+1)-(1/x-1)]/x^2+9/(x-1)(9-4x)
a rút gọn A
b thính giá trị của biểu thức A tại giá trị thỏa mãn/1/2x+1/=3/2
c tìm giá trị nhỏ nhất và lớn nhất của A
MỌI NGƯỜI LÀM GIÚP MÌNH NHA MÌNH ĐANG CẦN GẤP
\(A=\left[\frac{6x^2}{x^3-1}-\frac{2x-2}{x^2+x+1}-\frac{1}{x-1}\right]:\frac{x^2+9}{\left(x-1\right)\left(9-4x\right)}\)
\(=\left[\frac{6x^2}{x^3-1}-\frac{\left(2x-2\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)
\(=\frac{6x^2-\left(2x^2-4x+2\right)-x^2-x-1}{\left(x^2+x+1\right)\left(x-1\right)}\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)
\(=\frac{5x^2-2x^2+4x-2-x-1}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)
\(=\frac{3x^2+3x-3}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)
Biểu thức A bạn viết đúng chưa?
Tìm giá trị nhỏ nhất : A = | x - 2011 | + | x - 200 |
giúp mình nha mình cần gấp
Ta có : \(\left|x-2011\right|\ge0;\left|x-200\right|\ge0\)
=>|x-2011|+|x-200|\(\ge0\)
=>A\(\ge0\)
Dấu bằng xảy ra <=> x-2011=0<=>x=2011
x-200=0<=>x=200
Vậy Amin=0<=>x\(\in\left\{2011;200\right\}\)