Những câu hỏi liên quan
VV
Xem chi tiết
NN
29 tháng 6 2017 lúc 18:42

lớp 8a3 nguyễn khuyến đúng ko

Bình luận (0)
DA
Xem chi tiết
KN
30 tháng 5 2021 lúc 20:37

Xét biểu thức A 

A= 1+(1+2) +....... +(1+2+3+...+2012)

A = 1+1+2+1+2+3+...+1+2+3+...+2012

 A có 2012  số 1

      có 2011  số 2

         ...

        có 1 số 2012

A = 1 x2012 +2x2011+...+2012x1

 mà B = 1 x2012 +2x2011+...+2012x1

nên A=B

Bình luận (0)
DA
Xem chi tiết
DH
27 tháng 5 2021 lúc 9:31

\(A=1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2012\right)\)

\(=\left(1+1+1+...+1\right)+\left(2+2+...+2\right)+...+2012\)

\(=1\times2012+2\times2011+...+2012\times1\)

\(=B\)

Bình luận (0)
 Khách vãng lai đã xóa
HC
Xem chi tiết
LT
Xem chi tiết
QA
26 tháng 8 2021 lúc 16:05

Trả lời:

\(A=-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-\frac{1}{5^2}-...-\frac{1}{99^2}-\frac{1}{100^2}\)

\(=-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{99^2}+\frac{1}{100^2}\right)\)

Ta có:  \(\frac{1}{2^2}< \frac{1}{1.2}\)

           \(\frac{1}{3^2}< \frac{1}{2.3}\)

           \(\frac{1}{4^2}< \frac{1}{3.4}\)

           \(\frac{1}{5^2}< \frac{1}{4.5}\)

            ........

          \(\frac{1}{99^2}< \frac{1}{98.99}\)

         \(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< 1-\frac{1}{100}< 1\)

\(\Rightarrow-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}\right)>-1\)

Vậy A > - 1 

Bình luận (0)
 Khách vãng lai đã xóa
H24
26 tháng 8 2021 lúc 16:13

\(A=-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)

Ta có \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{100^2}< \frac{1}{99.100}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)

=> A > -1

Bình luận (0)
 Khách vãng lai đã xóa
LT
26 tháng 8 2021 lúc 15:55

giúp mình với nhé

Bình luận (0)
 Khách vãng lai đã xóa
PA
Xem chi tiết
NH
28 tháng 6 2015 lúc 14:25

mình chỉ làm đc câu a và d thôi bạn có **** k? nếu **** thì liên hệ mình làm cho

Bình luận (0)
H24
Xem chi tiết
JJ
Xem chi tiết
LD
29 tháng 6 2017 lúc 17:07

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\) 

 \(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{18}{19}.\frac{19}{20}\)

\(A=\frac{1}{20}\)

Bình luận (0)
TN
29 tháng 6 2017 lúc 17:14

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)........\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)

\(\Leftrightarrow A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...........\frac{18}{19}.\frac{19}{20}\)

\(\Leftrightarrow A=\frac{1}{20}>\frac{1}{21}\)

\(\Leftrightarrow A>\frac{1}{21}\)

\(B=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)................\left(1-\frac{1}{100}\right)\)

\(\Leftrightarrow B=\frac{3}{4}.\frac{8}{9}..................\frac{99}{100}\)

\(B=\frac{1.3}{2^2}.\frac{2.4}{3^2}................\frac{9.11}{50^2}\)

\(B=\frac{11}{50}< \frac{11}{21}\)

Bình luận (0)
NK
Xem chi tiết
XO
29 tháng 5 2021 lúc 9:40

\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)

\(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)

Nhận thầy 108 - 1 > 108 - 3

=> \(\frac{3}{10^8-1}< \frac{3}{10^8-3}\)

=> \(1+\frac{3}{10^8-1}< \frac{3}{10^8-3}+1\)

=> A < B

Bình luận (0)
 Khách vãng lai đã xóa
XO
29 tháng 5 2021 lúc 9:43

b) 17C = \(\frac{17\left(17^{203}+1\right)}{17^{204}+1}=\frac{17^{204}+1+16}{17^{204}+1}=1+\frac{16}{17^{204}+1}\)

17D = \(\frac{17\left(17^{202}+1\right)}{17^{203}+1}=\frac{17^{203}+1+16}{17^{203}+1}=1+\frac{16}{17^{203}+1}\)

Nhận thầy 17203 + 1 < 17204 + 1

=> \(\frac{16}{17^{203}+1}>\frac{16}{17^{204}+1}\)

=> \(\frac{16}{17^{203}+1}+1>\frac{16}{17^{204}+1}+1\Rightarrow17C>17D\Rightarrow C>D\) 

Bình luận (0)
 Khách vãng lai đã xóa