\(\frac{1}{2017}\)_\(\frac{1}{2018}\)+\(\frac{1}{2019}\)=\(\frac{1}{2018}\)_\(\frac{1}{2017-2019}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho x, y, z thỏa mãn:
\(\frac{x}{2017}+\frac{y}{2018}+\frac{z}{2019}=1\)
\(\frac{2017}{x}+\frac{2018}{y}+\frac{2019}{z}=0\)
CMR:\(\frac{x^2}{2017^2}+\frac{y^2}{2018^2}+\frac{z^2}{2019^2}=1\)
Tìm x biết
a) \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)
b) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)
\(a)\) Ta có :
\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)
\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)
\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)
\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)
Lại có :
\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)
\(\Rightarrow\)\(x=2019\)
Vậy \(x=2019\)
Chúc bạn học tốt ~
\(b)\) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(1-\frac{2}{x+1}=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(\frac{2}{x+1}=1-\frac{2017}{2019}\)
\(\Leftrightarrow\)\(\frac{2}{x+1}=\frac{2}{2019}\)
\(\Leftrightarrow\)\(x+1=2019\)
\(\Leftrightarrow\)\(x=2019-1\)
\(\Leftrightarrow\)\(x=2018\)
Vậy \(x=2018\)
Chúc bạn học tốt ~
So sánh:
\(C=\frac{2018^{2019}-1}{2018^{2018}-1}\)và\(D=\frac{2017^{2018}+1}{2017^{2017}+1}\)
Cho \(A=1-\frac{2017}{2019}+\left(\frac{2017}{2019}\right)^2-\left(\frac{2017}{2019}\right)^3+...+\left(\frac{2017}{2019}\right)^{2018}\)
Chứng minh A không là số nguyên.
So sánh: \(\frac{2017}{2018+2019}\)+ \(\frac{2018}{2017+2019}\)+ \(\frac{2019}{2017+2018}\)và 1
Bạn nào làm đúng mình tik cho
so sánh:
A=\(\frac{2017^{2018}+1}{2017^{2019}+1}\);B=\(\frac{2017^{2017}+1}{2017^{2018}+1}\)
Vì A < 1
\(\Rightarrow A< \frac{2017^{2018}+1+2016}{2017^{2019}+1+2016}=\frac{2017^{2018}+2017}{2017^{2019}+2017}=\frac{2017\left(2017^{2017}+1\right)}{2017\left(2017^{2018}+1\right)}=\frac{2017^{2017}+1}{2017^{2018}+1}=B\)
Vậy A < B
Tính:
\(\frac{1}{2018}-\frac{1}{2019}-\frac{2017}{2018}\)
\(\frac{1}{2018}-\frac{1}{2019}-\frac{2017}{2018}\)
= \(\left(\frac{1}{2018}-\frac{2017}{2018}\right)-\frac{1}{2019}\)
=\(-\frac{1008}{1009}-\frac{1}{2019}\)
=\(-\frac{2036161}{2073171}\)
Cho A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)
B = \(\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}+\frac{1}{2019}\)
Tính ( A - B - 1)2019
Ơ !!! Bài này giống bài 5 môn Toán thi cuối học kỳ 2 trường mình nè !!!
Bài làm
Ta có: \(A=\) \(1\) \(-\)\(\frac{1}{2}\)\(+\)\(\frac{1}{3}\)\(-\)\(\frac{1}{4}\)\(+\)\(......\)\(+\)\(\frac{1}{2017}\)\(-\)\(\frac{1}{2018}\)\(+\)\(\frac{1}{2019}\)
\(\Rightarrow\) \(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-2\left(\frac{1}{2}+\frac{1}{4}+......+\frac{1}{2018}\right)\)
\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2019}-\left(1+\frac{1}{2}+......+\frac{1}{1009}\right)\)
\(\Rightarrow A=\frac{1}{1010}+\frac{1}{1011}+......+\frac{1}{2019}\)
\(\Rightarrow A=B\)
Khi đó: (A - B - 1)2019 = -12019 = -1
Chúc bạn học tốt. K cho mk nhé! Thank you.
Thực hiện phép tính :
\(2018.\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019.\left(\frac{1}{2017}-2\right)\)
Ta có : \(2018.\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019.\left(\frac{1}{2017}-2\right)=\frac{2018}{2017}-2019.2-\frac{2019}{2017}+2019.2\)
\(=\frac{2018}{2017}-\frac{2019}{2017}=-\frac{1}{2017}\)
\(2018.\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019.\left(\frac{1}{2017}-2\right)\)
\(=\frac{2018}{2017}-2018.\frac{2019}{1009}-\frac{2019}{2017}+2019.2\)
\(=\frac{2018}{2017}-2.2019-\frac{2019}{2017}+2.2019\)
\(=\frac{2018}{2017}-\frac{2019}{2017}=-\frac{1}{2017}\)