.Tìm GTNN của \(M=-\frac{3}{\sqrt{x}+3}\)
Giup vs
Tìm gtnn và gtln của \(y=\frac{3}{2+\sqrt{2x-x^2+3}}\) giup mih vs
Xét \(P=\sqrt{2x-x^2+3}=\sqrt{4-\left(x^2-2x+1\right)}=\sqrt{4-\left(x-1\right)^2}\le\sqrt{4}=2\)
ĐK: \(\left(x-1\right)^2\le4\Leftrightarrow-2\le x-1\le2\Leftrightarrow-1\le x\le3\)
GTNN của P = 0 khi x = -1 hoặc 3 => GTLN của y = 3/2
GTLN của P = 2 khi x = 1 => GTNN của y = 3/4.
Cho P=\(\frac{\sqrt{x}-1}{\sqrt{x}}\). Tìm GTNN của M=\(x\sqrt{P}+\frac{4}{\sqrt{x}}\)
giúp mk vs
cho M = \(\left(\frac{\sqrt{x}}{x-4}-\frac{1}{x-3}\right).\frac{x-6\sqrt{x}+9}{\sqrt{x}-2}\)
a) dkxd và rút gọn M
b)tìm x để M>0
c) tìm GTNN của A = M + 3\(\sqrt{x}\)
MỌI NGƯỜI GIÚP MK VS Ạ , mk cần rất gấp . cảm ơn các bạn nha
câu 1, tìm GTNN của M=x^2-5x+y^2-xy-5x-4y+2014
câu 2, cho x,y,z>0 và x+y+z=1. Tìm GTNN của S=1/x +4/y + y/z
câu 3. cho pt x^2-5x+m-2=0
tìm m để pt có 2 nghiệm dương phân biệt thõa mãn \(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\)
Điều kiện có 2 nghiệm phân biệt tự làm nha
Theo vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=5\\x_1.x_2=m-2\end{cases}}\)
\(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\)
\(\Leftrightarrow4\left(\frac{1}{x_1}+\frac{1}{x_2}+\frac{2}{\sqrt{x_1.x_2}}\right)=9\)
\(\Leftrightarrow4\left(\frac{5}{m-2}+\frac{2}{\sqrt{m-2}}\right)=9\)
Làm nốt nhé
Câu 1:
M=\(\left(x^2+2xy+y^2\right)+\left(2x+2y\right)+1+\left(4x^2-4x+1\right)+2014\)
=\(\left(\left(x+y\right)^2+2\left(x+y\right)+1\right)+\left(2x-1\right)^2+2014\)
=\(\left(x+y+1\right)^2+\left(2x-1\right)^2+2014\ge2014\)
\(\Rightarrow M\ge2014\Leftrightarrow minM=2014\)
\(\Leftrightarrow\hept{\begin{cases}x+y+1=0\\2x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0,5\\y=1,5\end{cases}}\)
2/ \(S=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=9\)
Cho x,y,z>0 và xyz=1
Tìm GTNN của M=\(\frac{\sqrt{1+x^3+y^3}}{xy}+\frac{\sqrt{1+y^3+z^3}}{yz}+\frac{\sqrt{1+z^3+x^3}}{zx}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}=\frac{\sqrt{3xy}}{xy}=\frac{\sqrt{3}}{\sqrt{xy}}\)
Tương tự cho 2 BĐT còn lại ta có:
\(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3}}{\sqrt{yz}};\frac{\sqrt{1+z^3+x^3}}{xz}\ge\frac{\sqrt{3}}{\sqrt{xz}}\)
Cộng theo vế 3 BĐT trên ta có:
\(M\ge\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)=\sqrt{3}\cdot\left(\frac{\sqrt{x}}{\sqrt{xyz}}+\frac{\sqrt{y}}{\sqrt{xyz}}+\frac{\sqrt{z}}{\sqrt{xyz}}\right)\)
\(=\sqrt{3}\cdot\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{xyz}}\ge\sqrt{3}\cdot\frac{3\sqrt[3]{\sqrt{xyz}}}{1}=3\sqrt{3}\)
Khi \(x=y=z=1\)
B=\(\frac{x-4\sqrt{x}+1}{x-\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+1}+\frac{\sqrt{x}-1}{\sqrt{x}-2}\)
1) rút gọn B
2)tính B vs x=\(9+4\sqrt{2}\)
3) tìm GTNN của B
\(\left(\frac{3}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+1}\right):\frac{1}{\sqrt{x}+1}\) a Tìm đkxđ và rút gọn ; b tìm gtnn của \(M=\frac{x+12}{\sqrt{x}-1}.\frac{1}{p}\)
Tim GTNN
x;y>0 x^2 +y =1
\(T=\sqrt{x^4+\frac{1}{x^4}}+\sqrt{y^2+\frac{1}{y^2}}\)
giup minh vs
\(A=\frac{x\sqrt{x}-3}{x+2\sqrt{x}+3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
tìm GTNN của A