1.Tim x : \(\frac{x-5}{\left|5-x\right|}=-1\)
Tim x biet
\(3\left(x-\frac{1}{2}\right)-5\left(x+\frac{3}{5}\right)=-x+\frac{1}{5}\)
3.(x-1/2) -5(x+3/5)=-x+1/5
3x - 3/2 -5x +3 = -x+1/5
3x-5x+x= 3/2-3+1/5
x.(3-5+1)=15/10 + (-30/10)+2/10
x.(-1)= -13/10
x = -13/10 : (-1)
x=13/10
vậy x=13/10
Tim x biet
\(-5\left(x+\frac{1}{5}\right)-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{3}{2}x-\frac{5}{6}\)
-5.(x+1/5) -1/2.(x-2/3)=3/2x-5/6
-5x + (-1) -1/2x -1/3=3/2x-5/6
-5x-1/2x-3/2x=1+1/3-5/6
x.(-5-1/2-3/2)= 6/6+2/6+(-5/6)
x.(-10/2+(-1/2)+(-3/2))=3/6
x.6/2=1/2
x=1/2:6/2
x=1/6
Vậy x = 1/6
tim x
\(\frac{2}{3}x-\frac{1}{2}=\frac{1}{10}\)
\(\left(x.\frac{6}{7}+\frac{3}{7}\right).2\frac{1}{5}-\frac{3}{7}=-2\)
\(-5.\left(x+\frac{1}{5}\right)-\frac{1}{2}.\left(x-\frac{2}{3}\right)=\frac{3}{2}.x-\frac{5}{6}\)
\(3.\left(x-\frac{1}{2}\right)-5.\left(x+\frac{3}{5}\right)=-x+\frac{1}{5}\)
giúp mk nha , mk đang cần gấp
a) \(x=\frac{9}{10}\)
b) \(x=\frac{-4}{3}\)
c) \(x=\frac{1}{42}\)
d) \(x=\frac{-47}{10}\)
ko có thời gian nên mình chỉ cho đáp án thôi nhé
thông cảm cho mình ngen
đúng thì k đấy
chúc bạn học giỏi
làm chi tiết cho mk nhé
ai làm chi tiết mk k cho nhìu
tim x
a,\(\left(x-20\right)+\left(x-19\right)+\left(x-18\right)+....+200+201=201\)
b, \(\frac{x+1}{1}+\frac{2x+3}{3}+\frac{3x+5}{5}+....+\frac{20x+39}{39}=22+\frac{4}{3}+\frac{6}{5}+...+\frac{40}{39}\)
tim x
\(a,\left|\frac{4}{7}-x\right|+\frac{2}{5}=0\)
\(b,6-\left|\frac{1}{4}x+\frac{2}{5}\right|=0\)
\(c,\left|x-\frac{1}{3}\right|+\left|2-\frac{4}{5}\right|=0\)
a) \(\left|\frac{4}{7}-x\right|+\frac{2}{5}=0\)
=> \(\left|\frac{4}{7}-x\right|=-\frac{2}{5}\), vô lí vì \(\left|\frac{4}{7}-x\right|\ge0\)
Vậy không tồn tại giá trị của x thỏa mãn đề bài
b) \(6-\left|\frac{1}{4}x+\frac{2}{5}\right|=0\)
=> \(\left|\frac{1}{4}x+\frac{2}{5}\right|=6-0=6\)
=> \(\left[\begin{array}{nghiempt}\frac{1}{4}x+\frac{2}{5}=6\\\frac{1}{4}x+\frac{2}{5}=-6\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}\frac{1}{4}x=\frac{28}{5}\\\frac{1}{4}x=-\frac{32}{5}\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=\frac{112}{5}\\x=-\frac{128}{5}\end{array}\right.\)
Vậy \(\left[\begin{array}{nghiempt}x=\frac{112}{5}\\x=-\frac{128}{5}\end{array}\right.\)
c) \(\left|x-\frac{1}{3}\right|+\left|2-\frac{4}{5}\right|=0\)
=> \(\left|x-\frac{1}{3}\right|+\left|\frac{6}{5}\right|=0\)
=> \(\left|x-\frac{1}{3}\right|+\frac{6}{5}=0\)
=> \(\left|x-\frac{1}{3}\right|=-\frac{6}{5}\), vô lí vì \(\left|x-\frac{1}{3}\right|\ge0\)
Vậy không tồn tại giá trị của x thỏa mãn đề bài
\(\left[-\frac{2}{5}x^3.\left(2x-1\right)^m+\frac{2}{5}x^{m+3}\right]:\left(-\frac{2}{5}x^3\right)\)
tim x nguyen
giai ra giup minh voi
\(\left[\frac{-2}{5}x^3.\left(2x-1\right)^m+\frac{2}{5}x^{m+3}\right]:\left(\frac{-2}{5}x^3\right)\)
\(=\left[\frac{2}{5}x^3\left(2x+1\right)^m+\frac{2}{5}x^3.\left(\frac{2}{5}\right)^m\right]:\left(\frac{-2}{5}x^3\right)\)
\(=\left\{\frac{2}{5}x^3.\left[\left(2x+1\right)^m+\left(\frac{2}{5}\right)^m\right]\right\}:\left(\frac{-2}{5}x^3\right)\)
\(=\left\{\frac{2}{5}x^3.\left[2x+\frac{7}{5}\right]^m\right\}:\frac{-2}{5}x^3\)
\(=-\left(2x+\frac{7}{5}\right)^m\)
đến đây thì mình chịu
1) \(x\left(\frac{1}{4}+\frac{1}{5}\right)-\left(\frac{1}{7}+\frac{1}{8}\right)\)=0
tim x
\(x\left(\frac{1}{4}+\frac{1}{5}\right)-\left(\frac{1}{7}+\frac{1}{8}\right)=0\)
\(\frac{9}{20}x-\frac{15}{56}=0\)
\(\frac{9}{20}x=\frac{15}{56}\)
\(x=\frac{25}{42}\)
\(x\left[\frac{1}{4}+\frac{1}{5}\right]-\left[\frac{1}{7}+\frac{1}{8}\right]\) = \(0\)
\(\frac{9}{20}x-\frac{15}{56}\)= \(0\)
\(\frac{9}{20}x-\frac{15}{56}\)
\(x=\frac{25}{42}\)
Tim x biet neu \(\frac{x-2}{\left(a+3\right)\left(a-5\right)}=\frac{1}{2\left(a+3\right)}+\frac{1}{2\left(a+5\right)}\)
va x khac -3;5
\(VP=\frac{1}{2\left(a+3\right)}+\frac{1}{2\left(a+5\right)}=\frac{2\left(a+5\right)}{2\left(a+3\right)\left(a+5\right)}+\frac{2\left(a+3\right)}{2\left(a+3\right)\left(a+5\right)}\)
\(=\frac{2\left(a+5\right)}{4\left(a+3\right)\left(a+5\right)}+\frac{2\left(a+3\right)}{4\left(a+3\right)\left(a+5\right)}=\frac{2\left(a+5\right)+2\left(a+3\right)}{4\left(a+3\right)\left(a+5\right)}=\frac{2\left[\left(a+3\right)+\left(a+5\right)\right]}{4\left(a+3\right)\left(a+5\right)}=\frac{\left(a+3\right)+\left(a+5\right)}{2\left(a+3\right)\left(a+5\right)}\)
\(=\frac{\left(a+a\right)+\left(3+5\right)}{2\left(a+3\right)\left(a+5\right)}=\frac{2a+8}{2\left(a+3\right)\left(a+5\right)}=\frac{2\left(a+4\right)}{2\left(a+3\right)\left(a+5\right)}=\frac{a+4}{\left(a+3\right)\left(a+5\right)}\)
\(VT=\frac{x-2}{\left(a+3\right)\left(a-5\right)}\)
\(\Rightarrow\frac{x-2}{\left(a+3\right)\left(a-5\right)}=\frac{a+4}{\left(a+3\right)\left(a+5\right)}\)
\(\Rightarrow\frac{x-2}{a+4}=\frac{\left(a+3\right)\left(a-5\right)}{\left(a+3\right)\left(a+5\right)}\Rightarrow\frac{x-2}{a+4}=\frac{a-5}{a+5}\Rightarrow\left(x-2\right)\left(a+5\right)=\left(a-5\right)\left(a+4\right)\)
chịu
+Tim x :
a ) \(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
b )\(\left(x+\frac{1}{2}\right)^2=\frac{4}{25}\)
c ) \(\left(x+1\right)^{x+2}=\left(x-1\right)^{x+6}\) (x ϵ Z )
d ) \(\left(2x+3\right)^{2016}=\left(2x+3\right)^{2018}\)
e ) \(\frac{3}{x+2.x+5}+\frac{5}{x+5.x+10}+\frac{7}{x+10.x+17}=\frac{x}{x+2.x+17}\) Với \(x\notin\left\{-2;-5;-10;-17\right\}\)
\(a\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\\ =>\left(x-\frac{1}{2}\right)=\frac{1}{3}\\ =>x=\frac{1}{3}+\frac{1}{2}\\ =>x=\frac{5}{6}\)
b) \(\left(x+\frac{1}{2}\right)^2=\frac{4}{25}\\ =>\left(x+\frac{1}{2}\right)=\frac{2}{5}\\ =>x=\frac{-1}{10}\)
d) (2x+3)2016=(2x+3)2018 khi 2x+3=0 hoặc 1
Nếu 2x+3=0
=2x=-3 ( loại )
Nếu 2x+3=1
=>2x=-2
=>x=-1 ( thỏa )