Những câu hỏi liên quan
NA
Xem chi tiết
LD
12 tháng 11 2020 lúc 16:13

a) Gọi d là ƯC( 7n + 10 ; 5n + 7 ) 

=> \(\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)

=> ( 35n + 50 ) - ( 35n + 49 ) chia hết cho d

=> 35n + 50 - 35n - 49 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN( 7n + 10 ; 5n + 7 ) = 1

=> 7n + 10 ; 5n + 7 là hai số nguyên tố cùng nhau ( đpcm )

b) Gọi d là ƯC( 2n + 3 ; 4n + 8 )

=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

=> ( 4n + 8 ) - ( 4n + 6 ) chia hết cho d

=> 4n + 8 - 4n - 6 chia hết cho d

=> 2 chia hết cho d

=> d ∈ { 1 ; 2 }

Với d = 2 => \(2n+3⋮̸̸d\)

=> d = 1

=> ƯCLN( 2n + 3 ; 4n + 8 ) = 1

=> 2n + 3 ; 4n + 8 là hai số nguyên tố cùng nhau ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
TX
Xem chi tiết
H24
9 tháng 1 2016 lúc 17:39

Gọi ƯCLN(n + 1; 2n + 3) = d

Ta có : n + 1 chia hết cho d => 2(n + 1) chia hết cho d => 2n + 2 chia hết cho d

             2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 1 chia hết cho d

=> d = 1 hoặc -1

=> n + 1 và  2n + 3 nguyên tố cùng nhau

 

Bình luận (0)
NK
9 tháng 1 2016 lúc 17:39

Gọi ƯCLN(n + 1; 2n + 3) là d (d thuộc N*)

=> n + 1 chia hết cho d => 2(n + 1) chia hết cho d

     2n + 3 chia hết cho d 

=> (2n + 3) - 2(n + 1) chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d

=> 1 chia hết cho d

=> d = 1 (Vì d thuộc N*)

=> ƯCLN(n + 1; 2n + 3) = 1

hay 2 số này nguyên tố cùng nhau

Vậy...

Bình luận (0)
NQ
9 tháng 1 2016 lúc 17:42

Đặt UCLN(n + 1 ; 2n  + 3) = d (1)

n + 1 chia hết cho d=> 2n  + 2 chia hết cho d

mà 2n + 3 chia hết cho d

=> [(2n +3)-(2n+2)] chia hết cho d

1 chia het cho d => d = 1

Thay d=  1 vào (1) ta có: UCLN(n + 1 ; 2n + 3) = 1

=> ĐPCM 

Bình luận (0)
TE
Xem chi tiết
EC
15 tháng 12 2017 lúc 21:09

đặt \(\text{Ư}CLN_{\left(2n+7;2n+9\right)}=d\)  ( d  \(\in\) N)

\(\Rightarrow\hept{\begin{cases}2n+7⋮d\\2n+9⋮d\end{cases}}\Rightarrow2n+9-\left(2n+7\right)⋮d\)

                                \(\Rightarrow2n+9-2n-7\)  \(⋮d\)

                                \(\Rightarrow2\)                                   \(⋮d\)

\(\Rightarrow d\in\text{ }\left\{1;2\right\}\)

vì cả 2 số đều là số lẻ nên ko chia hết cho 2   \(\Rightarrow\) loại  \(d=2\)

\(\Rightarrow d=1\)

\(\Rightarrow\text{Ư}CLN_{\left(2n+9;2n+7\right)}=1\)

vậy 2 số  \(2n+7\)và   \(2n+9\)   là 2 số nguyên tố cùng nhau

chúc bạn học giỏi ^^

Bình luận (0)
LB
Xem chi tiết
ND
15 tháng 11 2015 lúc 8:24

d=(2n+5;3n+7)

=> 3(2n+5) - 2(3n+7) = 6n +15 - 6n -14 =1 chia hết cho d

=> d =1 

Vậy 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau

Bình luận (0)
TA
15 tháng 11 2015 lúc 8:25

Gọi ƯCLN ( 2n + 5 ; 3n + 7 ) là d. Ta có:

2n + 5 chia hết cho d => 3(2n + 5) = 6n + 15 chia hết cho d.

3n + 7 chia hết cho d => 2(3n + 7) = 6n + 14 chia hết cho d.

=> ( 6n + 15 ) - ( 6n + 14 ) chia hết cho d.

=> 1 chia hết cho d

=> d = 1

Vây 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau=>> ĐPCM

Bình luận (0)
TX
Xem chi tiết
ND
14 tháng 12 2015 lúc 19:29

tick cho mk thoát khỏi âm đi

Bình luận (0)
DH
14 tháng 12 2015 lúc 19:31

Ta có: 7n+10 và 5n+7 nguyên tố cùng nhau

Gọi ước chung của 2 số này là d

=> 7n+10 chia hết cho d

=> 5n+7 chia hết cho d

=> 5(7n+10) chia hết cho d

=> 7(5n+7) chia hết cho d

=> 35n+ 50 chia hết cho d

=> 35n+ 49 chia hết cho d

=> 35n+50 - 35n+49 chia hết cho d

=> 1 chia hết cho d

=> d thuộc U( 1)

=>  d=1

=> Nguyên tố cùng nhau

Tick mình nha các bạn 

Bình luận (0)
DA
Xem chi tiết
PA
25 tháng 11 2018 lúc 10:13

Lám đc chưa, tớ giải cho

Bình luận (0)
PA
1 tháng 12 2018 lúc 20:51

Xin lỗi nha máy mình ko viết đc một số dấu ,có gì sai sót  mong mọi người thông cảm và sửa lại giúp mình nha!

1)Gọi ước chung lớn nhất của 2n+1 và 2n+3 là a,với a thuộc tập hợp số tự nhiên

=>2n+1:a và 2n+3:a

=>(2n+3)-(2n+1):a

=>2:a

=>a thuộc tập hợp ước của 2

=>ước của 2=(1;2)

=>a=1;2

Vì 2n:2,với n thuộc tập hợp số tự nhiên,1 /:2

=>a=1

=>(2n+1,2n+3)=1

=>2n+1 và 2n+3 là hai số nguyên tố chùng nhau

CHÚC MỌI NGƯỜI HỌC TỐT NHÉ!

Bình luận (0)
NN
Xem chi tiết
AK
4 tháng 1 2017 lúc 20:11

Gọi ƯCLN ( 2n + 3 , 3n + 5 ) = d.

Ta có : 2n + 3 chia hết cho d.

           3n + 5 chia hết cho d.

=> 3( 2n + 3 ) chia hết cho d.

=> 2(3n + 5 ) chia hết cho d.

=> 6n + 9 chia hết cho d.

=> 6n +10 chia hết cho d.

Vậy ( 6n + 10 ) - ( 6n + 9 ) chia hết cho d.

      = 1 chia hết cho d

=> d thuộc Ư ( 1 )

=> d = 1

Vì ƯCLN ( 2n + 3 , 3n + 5 ) = 1

Nên 2n + 3 và 3n + 5 là hai số nguyên tố cùng nhau.

Bình luận (0)
TQ
2 tháng 12 2017 lúc 20:54

gọi d là ƯCLN (2n+3;3n+5) (với n thuộc N*)

suy ra  2n+3 chia hết cho d } 3(2n+3) chia hết cho d } 6n+9 chia hết cho d

           3n+5 chia hết cho d }  2(3n+5) chia hế cho d } 6n+10 chia hết cho d

suy ra [(6n+10) -(6n+9) chia hết  cho d

        =[(6n-6n)+(10-9)] chia hết cho d

        =[0+1] chia hết cho d

        =1 chia hết cho d

vì 1 chia hết cho d suy ra ƯCLN(2n+3,3n+5)=1

Bình luận (0)
KN
Xem chi tiết
NT
1 tháng 12 2016 lúc 22:25

Giải:

Gọi \(d=UCLN\left(3n+2;5n+3\right)\)

Ta có:

\(3n+2⋮d\)

\(5n+3⋮d\)

\(\Rightarrow5\left(3n+2\right)⋮d\)

\(3\left(5n+3\right)⋮d\)

\(\Rightarrow15n+10⋮d\)

\(15n+9⋮d\)

\(\Rightarrow15n+10-15n+9⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow UCLN\left(3n+2;5n+3\right)=1\)

\(\Rightarrow\)3n + 2 và 5n + 3 là 2 số nguyên tố cùng nhau

Vậy 3n + 2 và 5n + 3 là 2 số nguyên tố cùng nhau

Bình luận (0)
TM
1 tháng 12 2016 lúc 22:31

Gọi d là ƯCLN(3n+2,5n+3)

Ta có : \(\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}\)

\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\)

\(\Rightarrow15n+10-15n-9⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\RightarrowƯCLN\left(3n+2,5n+3\right)=1\)

Vậy : 3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau .

Bình luận (0)