Những câu hỏi liên quan
NO
Xem chi tiết
H24
27 tháng 11 2019 lúc 20:50

Ta có : \(a^3+b^3+3\left(a^2+b^2\right)+4\left(a+b\right)+4=0\)

\(=>\left(a+1\right)^3+\left(b+1\right)^3+a+b+2=0\)

\(=>\left(a+b+2\right)\left[\left(a+1\right)^2-\left(a+1\right)\left(b+1\right)+\left(b+1\right)^2\right]+\left(a+b+2\right)=0\)

\(=>\left(a+b+2\right)\left(a^2+b^2+a+b-ab+2\right)=0\)

\(=>\left(a+b+2\right)2\left(a^2+b^2+a+b-ab+2\right)=0\)

\(=>\left(a+b+2\right)\left(2a^2+2b^2+2a+2b-2ab+4\right)=0\)

\(=>\left(a+b+2\right)\left[\left(a-b\right)^2+\left(a+1\right)^2+\left(b+1\right)^2+2\right]=0\)

Lại có : \(\left(a-b\right)^2\ge0;\left(a+1\right)^2\ge0;\left(b+1\right)^2\ge0\)

\(=>\left(a-b\right)^2+\left(a+1\right)^2+\left(b+1\right)^2+2\ge0\)

\(=>a+b+2=0=>a+b=-2=>M=2018.\left(-2\right)^2=8072\)

Bình luận (0)
 Khách vãng lai đã xóa
PV
Xem chi tiết
XX
Xem chi tiết
MT
Xem chi tiết
DD
Xem chi tiết
H24
Xem chi tiết
AK
31 tháng 12 2018 lúc 17:25

Nhóm vào , ta có : 

\(\left(a+1\right)^3+\left(b+1\right)^3+a+b+1+1=0\)

Đến đây áp dụng HĐT là ra 

Bình luận (0)
AK
31 tháng 12 2018 lúc 18:53

Chán nhỉ ? 

Tách ra nhóm vào thì được thế ? 

Bình luận (0)
H24
Xem chi tiết
TN
Xem chi tiết
LM
Xem chi tiết
NH
18 tháng 3 2020 lúc 17:09

a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\)\(b=3k\)\(c=5k\)

Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)

b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)

\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)

\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)

\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)

\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)

Do đó:  +)  \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)

+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)

+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)

Bình luận (0)
 Khách vãng lai đã xóa