\(\frac{2}{4.6}+\frac{2}{6.8}+.....+\frac{2}{48.50}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tính giúp e ạ
\(\frac{2}{4.6}+\frac{2}{6.8}+....+\frac{2}{48.50}\)
Ta có : \(\frac{2}{4.6}+\frac{2}{6.8}+....+\frac{2}{48.50}\)
\(=\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{48}-\frac{1}{50}\)
\(=\frac{1}{4}-\frac{1}{50}\)
\(=\frac{23}{100}\)
Ta có : \(\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{48.50}\)
\(=\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{48}-\frac{1}{50}\)
\(=\frac{1}{4}-\frac{1}{50}\)
\(=\frac{50}{200}-\frac{4}{50}\)
\(=\frac{23}{100}\)
tính các tổng sau
c=\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{48.50}\)
d=1-2+3-4+...+99-100+101
ai bít giải giúp mink với
\(=\left(1+3+5+...+99+101\right)-\left(2+4+6+...98+100\right)\)
Thấy từ 1 đến 100 có (101-1)/2+1=51
=> 1+3+5+....+99+100=(1+101)x50/2=2601
Từ 2 đến 100 có (102-2)/2+1=50
=> 2+4+...+98+100=(2+100)X50/2=2550
=> D=2601-2550=51
2/2*4 + 2/4*6 + 3/6*8 + ... + 2/38*50
= 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 + .... + 1/38 - 1/50
= 1/2 - 1/50
= 24/50
= 12/25
Mk có cách khác câu d nè
\(D=\left(1-2\right)+\left(3-4\right)+...+\left(99-100\right)+101\)
\(=-1-1-1-...-1+101\)(có 50 số -1)
\(=-1\times50+101\)
\(=51\)
chúc bn hok tốt
Tính:
\(\frac{5}{2.4}+\frac{5}{4.6}+\frac{5}{6.8}+...+\frac{5}{48.50}\)
d) \(\frac{5}{2.4}+\frac{5}{4.6}+\frac{5}{6.8}+...+\frac{5}{48.50}\)
tính hợp lí (nếu có thể)
\(\frac{5}{2.4}+\frac{5}{4.6}+\frac{5}{6.8}+....+\frac{5}{48.50}\)
\(=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{48}-\frac{1}{50}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{50}\right)\)
\(=\frac{5}{2}.\frac{12}{25}=\frac{6}{5}\)
\(\frac{5}{2.4}+\frac{5}{4.6}+\frac{5}{6.8}+...+\frac{5}{48.50}\)
\(=\frac{2}{5}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{48.50}\right)\)
\(=\frac{2}{5}.\left(\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+...+\frac{50-48}{48.50}\right)\)
\(=\frac{2}{5}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{48}-\frac{1}{50}\right)\)
\(=\frac{2}{5}.\left(\frac{1}{2}-\frac{1}{50}\right)\)
\(=\frac{2}{5}.\frac{12}{25}\)
\(=\frac{24}{125}\)
\(\frac{5}{2.4}\)+\(\frac{5}{4.6}\)+\(\frac{5}{6.8}\)+....+\(\frac{5}{48.50}\)
\(\frac{5}{2.4}+\frac{5}{4.6}+\frac{5}{6.8}+...+\frac{5}{48.50}\)
\(=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{48}-\frac{1}{50}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{50}\right)\)
\(=\frac{5}{2}.\frac{12}{25}\)
\(=\frac{6}{5}\)
bài 2 tính tổng
A=\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+.....+\frac{1}{48.50}\)
B=\(\frac{3}{1.4}+\frac{3}{4.7}+......+\frac{3}{97.100}\)
C=\(\frac{8}{7.14}+\frac{8}{14.21}+......+\frac{8}{91.98}\)
giúp mk vs mk đang cần lắm
\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{48.50}.\)
\(=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}....+\frac{2}{48.50}\right)\)
\(=\frac{1}{2}.\left(\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+...+\frac{50-48}{48.50}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+.....+\frac{1}{48}-\frac{1}{50}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{50}\right)\)
\(=\frac{1}{2}.\frac{12}{25}=\frac{6}{25}\)
\(B=\frac{3}{1.4}+\frac{3}{4.7}+....+\frac{3}{97.100}\)
\(=\frac{4-1}{1.4}+\frac{7-4}{4.7}+....+\frac{100-97}{97.100}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{97}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(C=\frac{8}{7.14}+\frac{8}{14.21}+....+\frac{8}{91.98}\)
\(=\frac{7}{8}.\left(\frac{7}{7.14}+\frac{7}{14.21}+...+\frac{7}{91.98}\right)\)
\(=\frac{7}{8}.\left(\frac{1}{7}-\frac{1}{14}+\frac{1}{14}-\frac{1}{21}+.....+\frac{1}{91}-\frac{1}{98}\right)\)
\(=\frac{7}{8}.\left(\frac{1}{7}-\frac{1}{98}\right)\)
\(=\frac{7}{8}.\frac{13}{98}=\frac{13}{112}\)
bài 2 tính tổng
A=\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+.....+\frac{1}{48.50}\)
B=\(\frac{3}{1.4}+\frac{3}{4.7}+......+\frac{3}{97.100}\)
C=\(\frac{8}{7.14}+\frac{8}{14.21}+......+\frac{8}{91.98}\)
giúp mk vs mk đang cần lắm
\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}=\)
=\(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}\)
=\(\frac{1}{2}-\frac{1}{8}\)
=\(\frac{3}{8}\)
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2n.\left(2n+2\right)}\)
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2n.\left(2n+2\right)}\))
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2n}-\frac{1}{2n+2}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)\)
\(=\frac{1}{4}-\frac{1}{2.\left(2n+2\right)}\)
\(=\frac{1}{4}-\frac{1}{4n+4}=\frac{1}{4}-\frac{1}{4.\left(n+1\right)}\)
\(=\frac{n+1}{4.\left(n+1\right)}-\frac{1}{4.\left(n+1\right)}=\frac{n+1-1}{4.\left(n+1\right)}=\frac{n}{4.\left(n+1\right)}\)
bạn ơi mình ko hiểu chỗ \(\frac{1}{4}-\frac{1}{2.\left(2n+2\right)}\)
thì là do
\(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)=\frac{1}{2}.\frac{1}{2}-\frac{1}{2}.\frac{1}{2n+2}=\frac{1}{4}-\frac{1}{2.\left(2n+2\right)}\)
:)