\(A=1+\frac{1}{2}+\frac{1}{3}+..+\frac{1}{100}\)
Hãy chứng minh rằng tổng A không là số tự nhiên
\(Cho\) \(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\)
Chứng minh rằng tổng A không là số tự nhiên
Để quy đồng các mẫu của các phân số trong tổng A = \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\), ta chọn mẫu chung là tích của 26 với các thừa số lẻ nhỏ hơn 100 . Gọi k1 , k2 , ... k100 là các thừa số phụ tương ứng , tổng A có dạng : B = \(\frac{\left(k1+k2+k3+...+k100\right)}{2^6.3.5.7....99}\)
Trong 100 phân số của tổng A chỉ có duy nhất phân số \(\frac{1}{64}\)có mẫu chứa 26 nên trong các thừa số phụ k1 , k2 , ... , k100 chỉ có k64 ( thừa số phụ của \(\frac{1}{64}\)) là số lẻ ( bằng 3.5.7...99 ) , còn các thừa số phụ khác đều chẵn ( vì chứa ít nhất một thừa số 2 ) do đó B ( tức là A ) không thể là số tự nhiên
Chứng minh rằng A không phải là số tự nhiên
A= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{100^2}\)
Ta có: \(\frac{1}{2^2}>0\)
\(\frac{1}{3^2}>0\)
................
\(\frac{1}{100^2}>0\)
\(\Rightarrow A>0\left(1\right)\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...................
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}< 1\)
\(\Rightarrow A< 1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow0< A< 1\)
Vậy A ko là STN.
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}< 1\)
Vậy A không phải là một số tự nhiên
Cho A=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\)
Chứng minh Tổng A không là số tự nhiên
bạn chỉ cần lấy 1/100-1 là sẽ ra
nhớ tích và kết bạn với tớ nhé
để quy đồng mẫu các phân số trong tổng \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\), ta chọn MC là tích của 26 với các thừa số lẻ nhỏ hơn 100. Gọi k1, k2 , ... , k100 là các thừa số phụ tương ứng, tổng A có dạng :
B = \(\frac{k_1+k_2+...+k_{100}}{2^6.3.5.7.9...99}\). Trong 100 phân số của tổng A, chỉ có duy nhất phân số \(\frac{1}{64}\)có mẫu chứa 26 nên trong các thừa số phụ k1, k2 , ..., k100 chỉ có k64 ( thừa số phụ của \(\frac{1}{64}\)) là số lẻ ( bằng 3 . 5 . 7 . 9 ...99 ), còn các thừa số phụ khác đều chẵn ( vì chứa ít nhất một thừa số 2 ) . Phân số B có mẫu chia hết cho 2, tử không chia hết cho 2 , do đó B ( tức là A ) không thể là số
tự nhiên
Cho A=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\)
Chứng minh tổng A không là số tự nhiên
ra quy đồng các số hạng của A
ta chọn mẫu số chung là 2^6.1.3.5....99(do 2^7>100)
gọi k1,k2,...,k100 là các thừa số phụ tượng ứng
A có dạng k1+k2+...+k100/1.3.5.7..99.2^6
trong 100 phân số của A chỉ có duy nhất phân số 1/64 có mẫu số chứa 2^6neen trong các thừa số phụ k1,k2,..,k100 chỉ có k64=1.3.5...99 (là số lẻ) các thừa số phụ khác là số chẵn (vì có chứa ít nhất 1 thừa số 2)
do đó A khi quy đồng có tử số không chia hết cho 2 , mẫu số không chia hết cho 2=>A không là số tự nhiên
vậy A không là số tự nhiên (đpcm)
cho \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) không tính tổng S, hãy chứng minh S không phải 1 số tự nhiên
cho \(A=\frac{1}{61}+\frac{1}{62}+\frac{1}{63}+...+\frac{1}{99}+\frac{1}{100}\) . Chứng minh \(A>\frac{9}{20}\)
a,Ta có: \(\frac{3}{10}=\frac{3}{10};\frac{3}{11}< \frac{3}{10};\frac{3}{12}< \frac{3}{10};\frac{3}{13}< \frac{3}{10};\frac{3}{14}< \frac{3}{10}\)
\(\Rightarrow S< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}=\frac{3}{2}=1,5\left(1\right)\)
Lại có: \(\frac{3}{10}>\frac{3}{15};\frac{3}{11}>\frac{3}{15};\frac{3}{12}>\frac{3}{15};\frac{3}{13}>\frac{3}{15};\frac{3}{14}>\frac{3}{15}\)
\(\Rightarrow S>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\left(2\right)\)
Từ (1) và (2) => 1 < S < 1,5
Vậy...
b, \(A=\frac{1}{61}+\frac{1}{62}+...+\frac{1}{100}\)
\(=\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)+\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\)
Ta có: \(\frac{1}{61}>\frac{1}{80};\frac{1}{62}>\frac{1}{80};...;\frac{1}{80}=\frac{1}{80}\)
\(\Rightarrow\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}=\frac{20}{80}=\frac{1}{4}\left(1\right)\)
Lại có: \(\frac{1}{81}>\frac{1}{100};\frac{1}{82}>\frac{1}{100};...;\frac{1}{100}=\frac{1}{100}\)
\(\Rightarrow\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{20}{100}=\frac{1}{5}\left(2\right)\)
Từ (1) và (2) => \(A>\frac{1}{4}+\frac{1}{5}=\frac{9}{20}\)
Vậy...
Cho A = \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{44}+\frac{1}{45}\)
a, Chứng minh rằng A không là số tự nhiên
b,Giả sử sau khi tính tổng A ta được a/b là phân số tối giản. Chứng minh a chia hết cho 49
Chứng minh rằng tổng sau không phải là số tự nhiên
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)
A=1/2+1/3+1/4
A=5/6+1/4
A=13/12
Vậy A không phải số tự nhiên
Chứng minh rằng:
A=\(\frac{1}{3}\)+\(\frac{2}{3^2}\)+...+\(\frac{100}{3^{111}}\) không phải là 1 số tự nhiên
Bài 1 :
a) Chứng minh rằng :
\(1-\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}-\)\(\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
b) Giair bài toán trên trong trường hợp tổng quát
Bài 2 :
Chứng minh rằng tổng các số nghịch đảo của các số 2,3,4...,15 không phải là số tự nhiên
Bài 1 :
a.Ta có 1 - 1/2 + 1/3 - 1/4 + ... + 1/199 - 1/200
=(1+1/2+1/3+1/4+.....+1/199+1/200) -2(1/2+1/4+1/6+......+1/200)
=(1+1/2+1/3+1/4+.....+1/199+1/200) -(1+1/2+1/3+.....+1/100)
=1/101+1/102+....+1/199+1/200
b.Tổng quát bạn tự làm nhé
Bài 1 :
Ta giải bài toán tổng quát :chứng minh rằng : với n là số tự nhiên lớn hơn 1 , ta luô có :
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2n-1}\)\(-\frac{1}{2n}\)
\(=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\)
Thật vậy ,kí hiệu \(S2n=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2n}\)thì ta có :
\(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{2n}=S2n-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2n}\right)\)
\(=S2n-\left(1+\frac{1}{2}+...+\frac{1}{n}\right)=\frac{1}{n+1}+\frac{1}{n+2}+..+\frac{1}{2n}\)
Bài toán ở câu a chỉ là trường hợp riêng của bài toán trên với \(n=100\)
Bài 2 :
Đặt \(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{15}\left(1\right)\)
\(T=1.3.5.7...15\)( Tích các số lẻ bé hơn hoặc bằng 15 )
Nhân 2 vế của ( 1 ) với 2^2 .T ta được :
\(S.2^2T=\frac{2^2T}{2}+\frac{2^2T}{3}+\frac{2^2T}{4}+...+\frac{2^2T}{15}\left(2\right)\)
Dễ thấy tất cả các số hạng ở vế phải của ( 2) ,trừ số hặng \(\frac{2^2T}{2^3}\)đều là số tự nhiên ,suy ra vế phải có tổng không phải là số tự nhiên .Do đó S không phải là số tự nhiên
Chúc bạn học tốt ( -_- )