Những câu hỏi liên quan
SY
Xem chi tiết
KA
31 tháng 5 2017 lúc 9:27

Đặt \(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}=k\)

\(\Rightarrow\hept{\begin{cases}x^2+y^2=10k\left(1\right)\\x^2-2y^2=7k\left(2\right)\end{cases}}\)

Từ 2 ta có :

x2 = 7k + 2y2 

Thay ngược vào (1) , ta lại có :

7k + 2y2 + y2 = 10k

=> y2 = k

<=> x2 = 9k

Thay x2 , y2 vào biểu thức x4.y4 = 81

=> 81k2 . k2 = 81

=> k4 = 1

=> k = 1 hoặc = -1

Với k = 1 thì x = 3 hoặc -3 

               và y = 1 hoặc -1

Với k = -1 thì x,y không có giá trị thõa mãn 

Bình luận (0)
DL
15 tháng 7 2017 lúc 13:20
 

Đặt x2+y210 =x22y27 =k

{

x2+y2=10k(1)
x22y2=7k(2)

Từ 2 ta có :

x2 = 7k + 2y2 

Thay ngược vào (1) , ta lại có :

7k + 2y2 + y2 = 10k

=> y2 = k

<=> x2 = 9k

Thay x2 , y2 vào biểu thức x4.y4 = 81

=> 81k2 . k2 = 81

=> k4 = 1

=> k = 1 hoặc = -1

Với k = 1 thì x = 3 hoặc -3 

               và y = 1 hoặc -1

Với k = -1 thì x,y không có giá trị thõa mãn 

nha các bạn 
Bình luận (0)
KS
15 tháng 7 2017 lúc 13:27

kurosaki akatsu làm chuẩn ko cần chỉnh dễ hiểu

Bình luận (0)
TD
Xem chi tiết
NL
Xem chi tiết
H24
3 tháng 1 2016 lúc 21:42

Ta có: \(\frac{x^2+y^2}{10}=\frac{2x^2+2y^2}{20}=\frac{x^2-2y^2}{7}=\frac{\left(2x^2+2y^2\right)-\left(x^2-2y^2\right)}{20+7}=\frac{3x^2}{27}\)(theo t/c của dãy TSBN)

=>\(\frac{x^2+y^2}{10}=\frac{3x^2+3y^2}{30}=\frac{3x^2}{27}=\frac{\left(3x^2+3y^2\right)-3x^2}{30-27}=\frac{3y^2}{3}\) (theo t/c của dãy TSBN)

=>\(\frac{3x^2}{27}=\frac{3y^2}{3}\)

=>\(\frac{x^2}{3^2}=y^2\)

=>\(\left(\frac{x}{3}\right)^2=y^2\)

=>\(\frac{x}{3}=y\) hoặc \(\frac{x}{3}=-y\)

=>x=3y hoặc x=-3y

Ta có: x4y4=81

=>(xy)4=34=(-3)4

=>xy=3 hoặc xy=-3

TH1: xy=3

Thay x=3y và x=-3y lần lượt vào ta được x=3 và y=1

TH2:xy=-3

Thay x=3y và x=-3y lần lượt vào ta được x=3; y=-1 hoặc x=-3; y=1

Vậy (x;y)\(\in\){(3;1);(-3;1);(3;-1)}

Bình luận (0)
NL
3 tháng 1 2016 lúc 21:35

kaitovskudo  Cô bé lo lem làm chi tiết dùm mk

Bình luận (0)
NQ
Xem chi tiết
TD
Xem chi tiết
GZ
Xem chi tiết
GZ
Xem chi tiết
DQ
14 tháng 10 2020 lúc 18:56

\(\Leftrightarrow7x^2+7y^2=10x^2-20y^2\)

\(\Leftrightarrow27y^2=3x^2\)

\(\Leftrightarrow9y^2=x^2\)

\(\Leftrightarrow81y^4=x^4\)

Vì \(x^4y^4=81\Rightarrow81y^4.y^4=81\Leftrightarrow y^8=1\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)

\(y=\pm1\Rightarrow x^2=9y^2=9\Rightarrow x=\pm3\)

Vậy (x;y)=(\(\pm3;\pm1\))

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TL
30 tháng 10 2015 lúc 19:38

Áp dụng t/c của dãy tỉ số bằng nhau ta có: \(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}=\frac{x^2+y^2-\left(x^2-2y^2\right)}{10-7}=\frac{3y^2}{3}=y^2\)

=> x+ y= 10y2 => x= 9y2 => x4 = 81y4

Thay vào x4.y= 81y4.y4 = 81y= 81 => y= 1 => y = 1 hoặc y = - 1

=> x= 9 => x = 3 hoặc x = - 3

Vậy (x;y) = (3;1) ; (3;-1); (-3;1) ;(-3;-1)

Bình luận (0)
HD
Xem chi tiết
H24
23 tháng 8 2017 lúc 11:07

Bài làm

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Bình luận (0)