giải hệ phương trình 2/x+3 - 5/y-2 = 1
giải hệ phương trình\(\hept{\begin{cases}\frac{7}{x-y+2}-\frac{5}{x+y-1}=\frac{9}{2}\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{cases}}\)
\(\hept{\begin{cases}\frac{7}{x-y+2}-\frac{5}{x+y-1}=\frac{9}{2}\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{cases}}\)
Đặt \(a=\frac{1}{x-y+2};b=\frac{1}{x+y-1}\)ta được hệ phương trình:
\(\hept{\begin{cases}7a-5b=\frac{9}{2}\\3a+2b=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=\frac{1}{2}\end{cases}}}\)
Với \(\hept{\begin{cases}a=1\\b=\frac{1}{2}\end{cases}}\), ta được:
\(\hept{\begin{cases}\frac{1}{x-y+2}=1\\\frac{1}{x+y-1}=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y+2=1\\x+y-1=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
Vậy hệ phương trình có 1 nghiệm là x = 1 và y = 2
Giải hệ phương trình \(x^2=xy+1,y^2=3\left(y-2x\right)\)
Giải hệ phương trình:\(\hept{\begin{cases}x^2+y^2=1\\x^8+y^{12}=1\end{cases}}\)
Giả hệ phương trình:
\(\hept{\begin{cases}x+\sqrt{x^2-2x+2}=3^{y-1}+1\\y+\sqrt{y^2-2y+2}=3^{x-1}+1\end{cases}}\)
P/s: Ai giải được nào? Giải nhớ có cách làm nhé
Ko ai bt thì tôi tự giải. Xem có đúng ko?
Giải:
Đặt:
\(\hept{\begin{cases}a=x-1\\b=y-1\end{cases}}\)
Thay thế vào hệ, ta có:
\(\hept{\begin{cases}a+\sqrt{a^2+1}=3^b\\b+\sqrt{b^2+1}=3^a\end{cases}}\)
Vế trừ vế ta có:
\(a+\sqrt{a^2+1}+3^a=b+\sqrt{a^2+1}+3^b\)
Dùng hàm số
Suy ra: \(a=b\)
có thể bn nhưng lớp mk chưa học đến dạng này
hãy giúp tôi giải hệ phương trình sau
( x - y )^2 + 3( x - y ) =4
2x + 3y = 12
2x+3y=12 => 2x=12-3y => \(x=\frac{12-3y}{2}\)
Thay x vào pt 1 ta có: y=2 và x=3
giải hệ phương trình: x+y+xy=1 , y+z+yz=3 và x+z+zx=7
Giải hệ phương trình \(\hept{\begin{cases}2\sqrt{x}\left(1+\frac{1}{x+y}\right)=3\\2\sqrt{y}\left(1-\frac{1}{x+y}\right)=1\end{cases}}\)
Giải hệ phương trình: \(\begin{cases}3\sqrt[3]{3x^2+y+1}=\left(x-1\right)^3-y\\x^3-y-2x^2+2x+\sqrt{x}=\sqrt{x^3-y-2x^2+2x+21}\end{cases}\)
Giải hệ phương trình: \(\begin{cases}\sqrt{2y^2+3x+1}+\sqrt{1-3x}=2\sqrt{y^2+1}\\y^3+1+\sqrt[3]{y^3-3x^2+3x-1}=x\left(y^2+1\right)\end{cases}\)