Giải phương trình:
\(\frac{5x}{\left(x-2\right)\left(x+3\right)}=\frac{a}{x-2}+\frac{b}{x+3}\)
Giải bất phương trình và phương trình sau :
a, \(\left(5x-\frac{2}{3}\right)-\frac{2x^2-x}{2}\ge\frac{x\left(1-3x\right)}{3}-\frac{5x}{4}\)
b, \(\frac{x^2-4-\left|x-2\right|}{2}=x\left(x-1\right)\)
Cho x,y,z là các sô dương.Chứng minh rằng x/2x+y+z+y/2y+z+x+z/2z+x+y<=3/4
Giải bất phương trình và phương trình sau :
\(a,\left(5x-\frac{2}{3}\right)-\frac{2x^2-x}{2}\ge\frac{x\left(1-3x\right)}{3}-\frac{5x}{4}\)
\(b,\frac{x^2-4-\left|x-2\right|}{2}=x\left(x+1\right)\)
B1 :Giải phương trình
a,\(\frac{3\left(x-3\right)}{4}-1=\frac{2x+3\left(x+1\right)}{6}-\frac{7+12x}{12}\)
b,\(\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
c,\(\frac{x-2}{x+2}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{x^2-4}\)
d,I7-xI-5x=1
B2:Giải bất phương trình
a,\(\left(x-2\right)\left(x+2\right)\ge x\left(x-4\right)\)
b,\(\frac{x-1}{4}-1\ge\frac{x+1}{3}+8\)
Giải phương trình:
\(\frac{5x}{\left(x-2\right)\left(x+3\right)}=\frac{a}{x-2}+\frac{b}{x+3}\)
Mình ms lớp 7 neh, mình giải theo ý hiểu của mình thôi nha :
Có \(\frac{5x}{\left(x-2\right)\left(x+3\right)}=\frac{a}{x-2}+\frac{b}{x+3}=\frac{a\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}+\frac{b\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{5x}{\left(x-2\right)\left(x+3\right)}=\frac{ax+3a}{\left(x-2\right)\left(x+3\right)}+\frac{bx-2b}{\left(x-2\right)\left(x+3\right)}=\frac{ax+3a+bx-2b}{\left(x-2\right)\left(x+3\right)}\)
\(\Leftrightarrow5x=ax+3a+bx-2b\Leftrightarrow5x-\left(ax+bx\right)=3a-2b\)
\(\Leftrightarrow5x-ax-bx=3a-2b\Leftrightarrow x\left(5-a-b\right)=3a-2b\)
Em lậy a Minh ạ,...
Cái deck j thê snày ?
\(\frac{a\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}+\frac{b\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
Thôi thôi mắt cận thì đừng cs đụng tay vào cái đấy của ng ta là x + 3 đấy !
26 ,giải phương trình.
a,\(\frac{1}{x-1}+\frac{2}{x^2+x+1}=\frac{3x^2}{x^3-1}\)
b,\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
c,\(\frac{x-1}{x+2}+\frac{x-2}{x+1}=\frac{2\left(x^2+2\right)}{x^2-4}\)
d,\(\frac{3}{5x-1}+\frac{2}{3-5x}=\frac{4}{\left(1-5x\right)\left(x-3\right)}\)
\(\frac{x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{4x}{2\left(x+1\right)\left(x-3\right)}\)
\(\Leftrightarrow x^2+x+x^2-3x=4x\Leftrightarrow2x^2-6x=0\Leftrightarrow2x\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
giải bất phương trình
a.\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)
b.\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)
2.Giải phương trình
b.\(\frac{\left|2x-1\right|}{x-1}+1=\frac{1}{x-1}\)
Cái bài đầu giải BPT bn ghi cái dj ak ,mik cx k hỉu nữa
V mik giải bài 2 nghen, sửa lại đề bài đầu rồi mik giải cho
\(3x-3=|2x+1|\)
Điều kiện: \(3x-3\ge0\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=3x-3\\2x+1=-3x+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1-3\\2x+3x=-1+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=-3\\5x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\left(n\right)\\x=\frac{2}{5}\left(l\right)\end{cases}}}\)
Vậy S={3}
Cài đề câu b ,bn xem lại nhé!
\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Leftrightarrow\frac{2x-3}{35}+\frac{5x\left(x-2\right)}{35}-\frac{5x^2}{35}+\frac{7\left(2x-3\right)}{35}>0\)
\(\Leftrightarrow2x-3+5x\left(x-2\right)-5x^2+7\left(2x-3\right)>0\)
\(\Leftrightarrow2x-3+5x^2-10x-5x^2+14x-21>0\)
\(\Leftrightarrow6x-24>0\)
\(\Leftrightarrow x>4\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG TRÌNH LÀ : S = { \(x\text{\x}>4\)}
\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)
\(\Leftrightarrow\frac{6\left(6x+1\right)}{108}+\frac{9\left(x+3\right)}{108}\le\frac{18\left(5x+3\right)}{108}+\frac{12\left(12-5x\right)}{108}\)
\(\Leftrightarrow36x+6+9x+27\le90x+54+144-60x\)
\(\Leftrightarrow36x+6+9x+27-90x-54-144+60x\le0\)
\(\Leftrightarrow15x-165\le0\)
\(\Leftrightarrow x\le11\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG trình ..........
tk mk nka !!! chúc bạn học tốt !!!
Giải bất phương trình:
a) \(\left(x-3\right)^2< x^2-5x+4\)
b) \(\left(x-3\right)\left(x+3\right)\le\left(x+2\right)^2+3\)
c)\(\frac{4x-5}{7}>\frac{7-x}{5}\)
d) \(\frac{2x+1}{2}+3\ge\frac{3-5x}{3}-\frac{4x+1}{4}\)
Giải các bất phương trình sau
a)\(\frac{x+3}{6}+\frac{x-2}{10}>\frac{x+1}{5}\)
b)\(\left(x+1\right)\left(2x-2\right)-3< -5x-\left(2x+1\right)\left(3-x\right)\)
<3
a)\(\frac{x+3}{6}\)+\(\frac{x-2}{10}\)>\(\frac{x+1}{5}\)
<=> \(\frac{5\left(x+3\right)}{30}\)+\(\frac{3\left(x-2\right)}{30}\)>\(\frac{6\left(x+1\right)}{30}\)
<=>5(x+3)+3(x-2)>6(x+1)
<=>5x+15+3x-6>6x+6
<=>8x-6x >6-15+6
<=>2x >-3
<=>x >-1,5
Vậy tập nghiệm của bất phương trình là {x/x>-1,5}
b)(x+1)(2x-2)-3<-5x-(2x+1)(3-x)
<=> 2x\(^2\)-2x+2x-2-3<-5x-6x+2x\(^2\)-3+x
<=>2x\(^2\)-2x\(^2\)+5x+6x-x<2+3-3
<=>10x <2
<=>x <\(\frac{1}{5}\)
Vậy tập nghiệm của bất phương trình là {x/x<\(\frac{1}{5}\)}
Giải các phương trình và bất phương trình sau:
a, \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)
b, \(\frac{2x\left(x^2+1\right)-x^2-4}{3}+x\left(x^2-x+1\right)>\frac{5x^2+5}{3}\)
a) \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)
\(\left(\frac{x-1}{2}+1\right)+\left(\frac{x-2}{3}+3\right)+\left(\frac{x-3}{4}+1\right)=\left(\frac{x-4}{5}+1\right)+\left(\frac{x-5}{6}+1\right)\)
\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}=\frac{x-1}{5}+\frac{x-1}{6}\)
\(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)\)=0
\(x-1=0\)
\(x=1\)
Giải các phương trình sau:
a) \(\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4}{96}+1\right)+\left(\frac{x+5}{95}+1\right)\)
b) \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
a) \(\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4}{96}+1\right)+\left(\frac{x+5}{95}+1\right)\)
=> \(\frac{x+2+98}{98}+\frac{x+3+97}{97}=\frac{x+4+96}{96}+\frac{x+5+95}{95}\)
=> \(\frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{96}+\frac{x+100}{95}\)
=> \(\frac{x+100}{98}+\frac{x+100}{97}-\frac{x+100}{96}-\frac{x+100}{95}=0\)
=> \(\left(x+100\right)\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)
Ta có : \(\frac{1}{98}+\frac{1}{97}\ne\frac{1}{96}+\frac{1}{95}\) => \(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\ne0\)
=> \(x+100=0\)
=> \(x=-100\)