Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NT
Xem chi tiết
DL
Xem chi tiết
TQ
22 tháng 3 2015 lúc 17:39

bai 1 ta co ab-ba=10a+b-10b-b=(10a-a)-(10b-b)=9a-9b=9.(a-b). vi 9.(a-b) chia het cho 9 suy ra (ab-ba) chia het cho 9 voi a>b (dpcm)                                                                                                                                                                                                                       

Bình luận (0)
PH
2 tháng 8 2016 lúc 20:42

ban tran xuan quynh tra loi dung roi

Bình luận (0)
TT
9 tháng 8 2018 lúc 8:20

ko biét

Bình luận (0)
H24
Xem chi tiết
HV
Xem chi tiết
NH
7 tháng 10 2024 lúc 7:27

      Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

         Bài 1: CM A = n2 + n + 6 ⋮ 2 

+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)

  Khi đó: A = (2k)2 + 2k + 6 

              A = 4k2 + 2k + 6

             A =  2.(2k2 + k + 3)  ⋮ 2

+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ

         Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn

            ⇒  A = n2 + n + 6 là số chẵn 

                A = n2 + n + 6 ⋮ 2

+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N

       

 

           

             

 

 

Bình luận (0)
NH
7 tháng 10 2024 lúc 8:51

Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:

Bài 2: CM:  A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N

          Với n = 1 ta có: A = 13 + 1.5 

                A = 1 + 5 = 6 ⋮ 6

          Giả sử A đúng với n = k (k \(\in\) N)

          Khi đó ta có: A  = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)

          Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k  + 1

          Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6

Thật vậy với n = k + 1 ta có: 

       A = (k  + 1)3 + 5(k + 1) 

      A = (k  +1).(k  + 1)(k + 1) + 5.(k  +1)

     A = (k2 + k + k  +1).(k + 1) + 5k  +5

     A =  [k2 + (k + k) + 1].(k + 1) + 5k + 5

    A = [k2 + 2k + 1].(k + 1) + 5k + 5

   A = k3 + k2 + 2k2 + 2k + k  +1  +5k  +5

   A  = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5) 

    A = (k3 + 5k) + 3k2 + 3k + 6

   A = (k3 + 5k) + 3k(k +1) + 6

   k.(k  +1) là tích của hai số liên tiếp nên luôn chia hết cho 2

 ⇒ 3.k.(k + 1) ⋮ 6 (2)

     6 ⋮ 6 (3)

Kết hợp (1); (2) và (3) ta có:

    A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N

Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm) 

 

 

      

 

 

 

                  

           

          

 

                 

 

 

 

Bình luận (0)
NH
7 tháng 10 2024 lúc 9:06

                           Bài 3: 

Đây là toán nâng cao chuyên đề tính chất chia hết của một tích, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

                               Giải:

A = (n + 20132012).( n + 20122013)

TH1: Nếu n  là số chẵn ta có:

    2012 là số chẵn nên 20122013 là số chẵn suy ra n + 201213 là số chẵn. Mà số chẵn thì luôn chia hết cho 2

Vậy A = (n + 20132012).(n + 20122013) ⋮ 2 \(\forall\) n là số chẵn (1)

TH2: Nếu n là số lẻ ta có:

   2013 là số lẻ nên 20132012 là số lẻ khi đó ta có 

  n + 20132012 là số chẵn vì tổng của hai số lẻ là một số chẵn mà số chẵn thì luôn chia hết cho 2

Vậy A = (n + 20132012).(n + 20122013) ⋮ 2 \(\forall\) n là số lẻ (2)

Kết hợp (1) và (2) ta có:

A = (n + 20132012).(n + 20122013) ⋮ 2 ∀ n \(\in\) N

     

 

 

Bình luận (0)
NH
Xem chi tiết
LB
17 tháng 4 2020 lúc 21:03

B = 1.2.3.....2012(1+1/2+1/3+...+1/2012)

 Ta thấy từ 1 đến 2012 sẽ có hai số là 3 và 1342, mà 3x1342=4026 chia hết cho 2013 

=> B = 1.2.(3.1342).5...1341.1343.....2012.(1+1/2+1/3...+1/2012)

     B = 1.2.4026.5...1341.1343.....2012.(1+1/2+1/3...+1/2012)

=> B chia hết cho 2013 

 Bài toán này cho thêm tổng một dãy phân số trong ngoặc chỉ để mình hoang mang thôi bạn nhé =))

Chúc bạn học tốt, nhớ tích câu trả lời của mình nhé !

Bình luận (0)
 Khách vãng lai đã xóa
LV
Xem chi tiết
LL
15 tháng 10 2015 lúc 22:03

b;

bạn thử từng trường hợp đầu tiên là chia hết cho 2 thì n=2k và 2k+1.

.......................................................................3......n=3k và 3k + 1 và 3k+2

c;

bạn phân tích 2 số ra rồi trừ đi thì nó sẽ chia hết cho 9

d;tương tự b

e;g;tương tự a

Bình luận (0)
NL
Xem chi tiết
NQ
10 tháng 2 2018 lúc 21:02

a, 5M = 5+1+1/5+1/5^2+.....+1/5^2011

4M=5M-M=(5+1+1/5+1/5^2+.....+1/5^2011)-(1+1/5+1/5^2+.....+1/5^2012)

               = 5-1/5^2012

=> M = (5 - 1/5^2012)/4

Tk mk nha

Bình luận (0)
NH
Xem chi tiết
TT
Xem chi tiết